

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE STRUCTURE AND SYLLABUS

For UG - R20

B. TECH - ELECTRONICS AND COMMUNICATION ENGINEERING

(Applicable for batches admitted from 2020-2021)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA - 533 003, ANDHRA PRADESH, INDIA

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

COURSE STRUCTURE

I Year – I SEMESTER

S. No	Category	Subjects	L	Т	Р	Credits
1	HS	Communicative English	3	0	0	3
2	BS	Mathematics -I	3	0	0	3
3	BS	Applied Chemistry	3	0	0	3
4	ES	Programming for Problem Solving Using C	3	0	0	3
5	BS	Engineering Drawing	2	0	2	3
6	LC	English Communication Skills Laboratory	0	0	3	1.5
7	LC	Applied Chemistry Lab	0	0	3	1.5
8	LC	Programming for Problem Solving Using C Lab	0	0	3	1.5
		Total Credits				19.5

I Year – II SEMESTER

S. No	Category	Subjects	L	Т	Р	Credits
1	BS	Mathematics –II	3	0	0	3
2	BS	Applied Physics	3	0	0	3
3	ES	Object Oriented Programming through Java	2	0	2	3
4	ES	Network Analysis	3	0	0	3
5	ES	Basic Electrical Engineering	3	0	0	3
6	LC	Electronic workshop Lab	0	0	3	1.5
7	LC	Basic Electrical Engineering Lab	0	0	3	1.5
8	LC	Applied Physics Lab	0	0	3	1.5
9	МС	Environmental Science	3	0	0	0.0
	Total Credits					19.5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

II B.Tech – I Semester

S. No	Subjets	Category	L	Т	Р	Credits
1	Electronic Devices and Circuits	PCC	3	1	0	3
2	Switching Theory and Logic Design	PCC	3	1	0	3
3	Signalsand Systems	PCC	3	1	0	3
4	Random Variables and Stochastic Processes	PCC	3	1	0	3
5	Mathematics-III	BSC	3	1	0	3
6	OOPS through Java Lab	PCC lab	0	0	3	1.5
7	Electronic Devices and Circuits -Lab	PCC lab	0	0	3	1.5
8	Switching Theoryand Logic Design–Lab	PCC lab	0	0	3	1.5
9	9 Python Programming Skill oriented course*		0	0	4	2
	Total Credits					21.5

II B.Tech – II Semester

S. No	Subjets	Category	L	Т	Р	Credits
1	Electronic Circuit Analysis	BSC/PC	3	1	0	3
2	Digital IC Design	PCC	3	1	0	3
3	Analog Communications	PCC	3	0	0	3
4	Linear control Systems	ESC	3	1	0	3
5	Management and Organizational Behavior	HSS	3	0	0	3
6 Electronic Circuit Analysis Lab		PCC Lab	0	0	3	1.5
7	Analog Communications Lab	PCC Lab	0	0	3	1.5
8	Digital IC Design Lab	PCCLab	0	0	3	1.5
9	Soft Skills	Skill oriented course*	0	0	4	2
	Total Credits					21.5

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

I Year - I Semester		L	Т	Р	С
1 Tear - I Semester		3	0	0	3
	COMMUNICATIVE ENGLISH				

Introduction

The course is designed to train students in receptive (listening and reading) as well as productive and interactive (speaking and writing) skills by incorporating a comprehensive, coherent and integrated approach that improves the learners' ability to effectively use English language in academic/ workplace contexts. The shift is from *learning about the language* to *using the language*. On successful completion of the compulsory English language course/s in B.Tech., learners would be confident of appearing for international language qualification/proficiency tests such as IELTS, TOEFL, or BEC, besides being able to express themselves clearly in speech and competently handle the writing tasks and verbal ability component of campus placement tests. Activity based teaching-learning methods would be adopted to ensure that learners would engage in actual use of language both in the classroom and laboratory sessions.

Course Objectives

- Facilitate effective listening skills for better comprehension of academic lectures and English spoken by native speakers
- Focus on appropriate reading strategies for comprehension of various academic texts and authentic materials
- ➤ Help improve speaking skills through participation in activities such as role plays, discussions and structured talks/oral presentations
- Impart effective strategies for good writing and demonstrate the same in summarizing, writing well organized essays, record and report useful information
- Provide knowledge of grammatical structures and vocabulary and encourage their appropriate use in speech and writing

Learning Outcomes

At the end of the module, the learners will be able to

- understand social or transactional dialogues spoken by native speakers of English and identify the context, topic, and pieces of specific information
- > ask and answer general questions on familiar topics and introduce oneself/others
- employ suitable strategies for skimming and scanning to get the general idea of a text and locate specific information
- > recognize paragraph structure and be able to match beginnings/endings/headings with paragraphs
- ➢ form sentences using proper grammatical structures and correct word forms

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

<u>Unit 1:</u> Lesson-1: A Drawer full of happiness from "Infotech English", Maruthi Publications

Lesson-2: Deliverance by Premchand from "The Individual Society", Pearson Publications. (Non-detailed)

Listening: Listening to short audio texts and identifying the topic. Listening to prose, prose and conversation.

Speaking: Asking and answering general questions on familiar topics such as home, family, work, studies and interests. Self introductions and introducing others.

Reading: Skimming text to get the main idea. Scanning to look for specific pieces of information.

Reading for Writing: Paragraph writing (specific topics) using suitable cohesive devices; linkers, sign posts and transition signals; mechanics of writing - punctuation, capital letters.

Vocabulary: Technical vocabulary from across technical branches (20) GRE Vocabulary (20) (Antonyms and Synonyms, Word applications) Verbal reasoning and sequencing of words.

Grammar: Content words and function words; word forms: verbs, nouns, adjectives and adverbs; nouns: countables and uncountables; singular and plural basic sentence structures; simple question form - wh-questions; word order in sentences.

Pronunciation: Vowels, Consonants, Plural markers and their realizations

<u>Unit 2:</u>

Lesson-1: Nehru's letter to his daughter Indira on her birthday from "Infotech English", Maruthi Publications

Lesson-2: Bosom Friend by Hira Bansode from "The Individual Society", Pearson Publications.(Non-detailed)

Listening: Answering a series of questions about main idea and supporting ideas after listening to audio texts, both in speaking and writing.

Speaking: Discussion in pairs/ small groups on specific topics followed by short structured talks. Functional English: Greetings and leave takings. **Reading**: Identifying sequence of ideas; recognizing verbal techniques that help to link the ideas in a paragraph together.

Reading for Writing: Summarizing - identifying main idea/s and rephrasing what is read; avoiding redundancies and repetitions.

Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary Analogies (20 words) (Antonyms and Synonyms, Word applications)

Grammar: Use of articles and zero article; prepositions.

Pronunciation: Past tense markers, word stress-di-syllabic words

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

<u>Unit 3:</u>

Lesson-1: Stephen Hawking-Positivity 'Benchmark' from "Infotech English", Maruthi Publications

Lesson-2: Shakespeare's Sister by Virginia Woolf from "The Individual Society", Pearson Publications.(Non-detailed)

Listening:Listening for global comprehension and summarizing what is listened to, both in speaking and writing.

Speaking: Discussing specific topics in pairs or small groups and reporting what is discussed.Functional English:Complaining and Apologizing.

Reading: Reading a text in detail by making basic inferences - recognizing and interpreting specific context clues; strategies to use text clues for comprehension.Critical reading.

Reading for Writing: Summarizing - identifying main idea/s and rephrasing what is read; avoiding redundancies and repetitions. Letter writing-types, format and principles of letter writing.E-mail etiquette, Writing CV's.

Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Association, sequencing of words

Grammar: Verbs - tenses; subject-verb agreement; direct and indirect speech, reporting verbs for academic purposes.

Pronunciation: word stress-poly-syllabic words.

<u>Unit 4:</u>

Lesson-1: Liking a Tree, Unbowed: Wangari Maathai-biography from "Infotech English", Maruthi Publications

Lesson-2: Telephone Conversation-Wole Soyinka from "The Individual Society", Pearson Publications.(Non-detailed)

Listening: Making predictions while listening to conversations/ transactional dialogues without video (only audio); listening to audio-visual texts.

Speaking: Role plays for practice of conversational English in academic contexts (formal and informal) - asking for and giving information/directions.Functional English: Permissions, Requesting, Inviting.

Reading: Studying the use of graphic elements in texts to convey information, reveal trends/patterns/relationships, communicative process or display complicated data.

Reading for Writing: Information transfer; describe, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables.Writing SOP, writing for media.

Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Cloze Encounters.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Grammar: Quantifying expressions - adjectives and adverbs; comparing and contrasting; degrees of comparison; use of antonyms

Pronunciation: Contrastive Stress

<u>Unit 5:</u>

Lesson-1: Stay Hungry-Stay foolish from "Infotech English", Maruthi Publications

Lesson-2: Still I Rise by Maya Angelou from "The Individual Society", Pearson Publications.(Non-detailed)

Listening: Identifying key terms, understanding concepts and interpreting the concepts both in speaking and writing.

Speaking: Formal oral presentations on topics from academic contexts - without the use of PPT slides.Functional English: Suggesting/Opinion giving.

Reading: Reading for comprehension. RAP StrategyIntensive reading and Extensive reading techniques.

Reading for Writing: Writing academic proposals- writing research articles: format and style.

Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Coherence, matching emotions.

Grammar: Editing short texts – identifying and correcting common errors in grammar and usage (articles, prepositions, tenses, subject verb agreement)

Pronunciation: Stress in compound words **Prescribed text books for theory for Semester-I**:

- 1. "Infotech English", Maruthi Publications. (Detailed)
- 2."The Individual Society", Pearson Publications.(Non-detailed)

Prescribed text book for Laboratory for Semesters-I & II:

1. "Infotech English", Maruthi Publications. (with Compact Disc)

Reference Books:

- Bailey, Stephen. Academic writing: A handbook for international students. Routledge, 2014.
- Chase, Becky Tarver. *Pathways: Listening, Speaking and Critical Thinking*. Heinley ELT; 2nd Edition, 2018.
- Skillful Level 2 Reading & Writing Student's Book Pack (B1) Macmillan Educational.
- Hewings, Martin. Cambridge Academic English (B2). CUP, 2012.

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

I.V.o.n. I.Comoston	L	Т	Р	С
I Year - I Semester	3	0	0	3

MATHEMATICS-I

Course Objectives:

- This course will illuminate the students in the concepts of calculus.
- To enlighten the learners in the concept of differential equations and multivariable calculus.
- To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real world problems and their applications.

Course Outcomes:

At the end of the course, the student will be able to

- Utilize mean value theorems to real life problems (L3)
- Solve the differential equations related to various engineering fields (L3)
- Familiarize with functions of several variables which is useful in optimization (L3)
- Apply double integration techniques in evaluating areas bounded by region (L3)
- Students will also learn important tools of calculus in higher dimensions. Students will become familiar with 2- dimensional and 3-dimensional coordinate systems (L5)

UNIT I: Sequences, Series and Mean value theorems: (10 hrs) Sequences and Series: Convergences and divergence – Ratio test – Comparison tests – Integral test – Cauchy's root test – Alternate series – Leibnitz's rule.

Mean Value Theorems (without proofs): Rolle's Theorem – Lagrange's mean value theorem – Cauchy's mean value theorem – Taylor's and Maclaurin's theorems with remainders.

UNIT II: Differential equations of first order and first degree: (10 hrs) Linear differential equations – Bernoulli's equations – Exact equations and equations reducible to exact form.

Applications: Newton's Law of cooling – Law of natural growth and decay – Orthogonal trajectories – Electrical circuits.

UNIT III: Linear differential equations of higher order: (10 hrs) Non-homogeneous equations of higher order with constant coefficients – with non-homogeneous term of the type e^{ax} , sin ax, cos ax, polynomials in x^n , $e^{ax} V(x)$ and $x^n V(x)$ – Method of Variation of parameters. Applications: LCR circuit, Simple Harmonic motion.

UNIT IV: Partial differentiation:

(10 hrs)

Introduction – Homogeneous function – Euler's theorem – Total derivative – Chain rule – Jacobian – Functional dependence – Taylor's and Mc Laurent's series expansion of functions of two variables.

Applications: Maxima and Minima of functions of two variables without constraints and Lagrange's method (with constraints).

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UNIT V: Multiple integrals:

(8 hrs)

Double and Triple integrals – Change of order of integration – Change of variables. Applications: Finding Areas and Volumes.

Text Books:

- 1) B. S. Grewal, Higher Engineering Mathematics, 43rd Edition, Khanna Publishers.
- 2) B. V. Ramana, Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.

Reference Books:

- 1) Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India.
- 2) Joel Hass, Christopher Heil and Maurice D. Weir, Thomas calculus, 14th Edition, Pearson.
- 3) Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 2013.
- 4) Srimantha Pal, S C Bhunia, Engineering Mathematics, Oxford University Press.

L Т Р С I Year - I Semester 3 0 0 3 **APPLIED CHEMISTRY**

Knowledge of basic concepts of Chemistry for Engineering students will help them as professional engineers later in design and material selection, as well as utilizing the available resources.

COURSE OBJECTIVES

- Importance of usage of plastics in household appliances and composites (FRP) in aerospace and automotive industries.
- *Outline* the basics for the construction of electrochemical cells, batteries and fuel cells. Understand the mechanism of corrosion and how it can be prevented.
- *Explain* the preparation of semiconductors and nanomaterials, engineering applications of nanomaterials, superconductors and liquid crystals.
- **Recall** the increase in demand for power and hence alternative sources of power are studied due to depleting sources of fossil fuels. Advanced instrumental techniques are introduced.
- **Outline** the basics of computational chemistry and molecular switches

UNIT I: POLYMER TECHNOLOGY

Polymerisation:- Introduction, methods of polymerization (emulsion and suspension), mechanical properties.

Plastics: Compounding, fabrication (compression, injection, blown film and extrusion), preparation, properties and applications (PVC, polycarbonates and Bakelite), mention some examples of plastic materials used in electronic gadgets, recycling of e-plastic waste (waste to wealth).

Elastomers:- Introduction, preparation, properties and applications (Buna S, thiokol and polyurethanes).

Composite materials: Fiber reinforced plastics, conducting polymers, biodegradable polymers, biopolymers, biomedical polymers.

Course Outcomes: At the end of this unit, the students will be able to

• *Analyze* the different types of composite plastic materials and *interpret* the mechanism of conduction in conducting polymers.

UNIT II: ELECTROCHEMICAL CELLS AND CORROSION

Single electrode potential, electrochemical series and uses of series, standard hydrogen electrode, calomel electrode, construction of glass electrode, batteries (Dry cell, Li ion battery and zinc air cells), fuel cells (H₂-O₂, CH₃OH-O₂, phosphoric acid and molten carbonate).

Corrosion:-Definition, theories of corrosion (chemical and electrochemical), galvanic corrosion, differential aeration corrosion, stress corrosion, galvanic series, factors influencing rate of corrosion, corrosion control (proper designing and cathodic protection), Protective coatings (surface preparation, cathodic coatings, anodic coatings, electroplating and electroless plating [nickel]), Paints (constituents, functions and special paints).

Course Outcomes: At the end of this unit, the students will be able to

Utilize the theory of construction of electrodes, batteries and fuel cells in redesigning new engineering products and categorize the reasons for corrosion and study methods to control corrosion.

8 hrs

10 hrs

UNIT III: MATERIAL CHEMISTRY

Part I : Non-elemental semiconducting materials:- Stoichiometric, controlled valency & chalcogen photo/semiconductors-preparation of semiconductors (distillation, zone refining, Czochralski crystal pulling, epitaxy, diffusion, ion implantation) - Semiconductor devices (p-n junction diode as rectifier, junction transistor).

Insulators & magnetic materials: electrical insulators-ferro and ferri magnetism-Hall effect and its applications.

Part II:

Nano materials:- Introduction, sol-gel method, characterization by (Brunauer Emmet Teller [BET]), (scanning electron microscopy [SEM]) and (transmission electron microscopy [TEM]), applications of graphene and fullerenes, carbon nanotubes (types, preparation and applications)

Liquid crystals:- Introduction-types-applications.

*Super conductors:-*Type –I, Type II-characteristics and applications

Course Outcomes: At the end of this unit, the students will be able to

- *Synthesize* nanomaterials for modern advances of engineering technology.
- Summarize the preparation of semiconductors; analyze the applications of liquid crystals and superconductors.

UNIT IV:

SPECTROSCOPIC TECHNIQUES & NON-CONVENTIONAL ENERGY SOURCES 10 hrs

Part A: SPECTROSCOPIC TECHNIQUES

Electromagnetic spectrum-UV (laws of absorption, instrumentation, theory of electronic spectroscopy, Frank-condon principle, chromophores and auxochromes, intensity shifts, applications), FT-IR [instrumentation and differentiation of sp, sp², sp³ and IR stretching of functional groups (alcohols,

carbonyls, amines) applications], magnetic resonance imaging and CT scan (procedure & applications).

Part B: NON-CONVENTIONAL ENERGY SOURCES

Design, working, schematic diagram, advantages and disadvantages of photovoltaic cell, hydropower, geothermal power, tidal and wave power, ocean thermal energy conversion.

Course Outcomes: At the end of this unit, the students will be able to

- Analyze the principles of different analytical instruments and their applications.
- **Design** models for energy by different natural sources.

UNIT V: ADVANCED CONCEPTS/TOPICS IN CHEMISTRY

Computational chemistry: Introduction to computational chemistry, molecular modelling and docking studies

Molecular switches: characteristics of molecular motors and machines, Rotaxanes and Catenanes as artificial molecular machines, prototypes - linear motions in rotaxanes, an acid-base controlled molecular shuttle, a molecular elevator, an autonomous light-powered molecular motor

Course Outcomes: At the end of this unit, the students will be able to

Obtain the knowledge of computational chemistry and molecular machines

10 hrs

Standard Books:

- 1. P.C. Jain and M. Jain "Engineering Chemistry", 15/e, Dhanpat Rai & Sons, Delhi, (Latest edition).
- 2. Shikha Agarwal, "Engineering Chemistry", Cambridge University Press, New Delhi, (2019).
- 3. S.S. Dara, "A Textbook of Engineering Chemistry", S.Chand & Co, (2010).
- 4. Shashi Chawla, "Engineering Chemistry", Dhanpat Rai Publicating Co. (Latest edition).

Reference:

- 1. K. Sesha Maheshwaramma and Mridula Chugh, "Engineering Chemistry", Pearson India Edn.
- 2. O.G. Palana, "Engineering Chemistry", Tata McGraw Hill Education Private Limited, (2009).
- 3. CNR Rao and JM Honig (Eds) "**Preparation and characterization of materials**" Academic press, New York (latest edition)
- 4. B. S. Murthy, P. Shankar and others, "**Textbook of Nanoscience and Nanotechnology**", University press (latest edition)

I Year - I Semester		L	Т	Р	С
1 Year - 1 Semester		3	0	0	3
PF	OGRAMMING FOR PROBLEM SOLVING	USING	С		

COURSE OBJECTIVES:

The objectives of Programming for Problem Solving Using C are

- To learn about the computer systems, computing environments, developing of a computer program and Structure of a CProgram
- To gain knowledge of the operators, selection, control statements and repetition inC
- To learn about the design concepts of arrays, strings, enumerated structure and union types. To learn about their usage.
- To assimilate about pointers, dynamic memory allocation and know the significance of Preprocessor.
- To assimilate about File I/O and significance of functions

UNIT I

Introduction to Computers: Creating and running Programs, Computer Numbering System, Storing Integers, Storing Real Numbers

Introduction to the C Language: Background, C Programs, Identifiers, Types, Variable, Constants, Input/output, Programming Examples, Scope, Storage Classes and Type Qualifiers. **Structure of a C Program:** Expressions Precedence and Associativity, Side Effects, Evaluating Expressions, Type Conversion Statements, Simple Programs, Command Line Arguments.

UNIT II

Bitwise Operators: Exact Size Integer Types, Logical Bitwise Operators, Shift Operators. **Selection & Making Decisions:** Logical Data and Operators, Two Way Selection, Multiway Selection, More Standard Functions

Repetition: Concept of Loop, Pretest and Post-test Loops, Initialization and Updating, Event and Counter Controlled Loops, Loops in C, Other Statements Related to Looping, Looping Applications, Programming Examples

UNIT III

Arrays: Concepts, Using Array in C,ArrayApplication, Two DimensionalArrays, Multidimensional Arrays, Programming Example –CalculateAverages

Strings: String Concepts, C String, String Input / Output Functions, Arrays of Strings, String Manipulation Functions String/ Data Conversion, A Programming Example – Morse Code **Enumerated, Structure, and Union:** The Type Definition (Type-def), Enumerated Types, Structure, Unions, and Programming Application

UNIT IV

Pointers: Introduction, Pointers to pointers, Compatibility, L value and R value **Pointer Applications:** Arrays, and Pointers, Pointer Arithmetic and Arrays, Memory Allocation Function, Array of Pointers, Programming Application

Processor Commands: Processor Commands

UNIT V

Functions: Designing, Structured Programs, Function in C, User Defined Functions, Inter-Function Communication, Standard Functions, Passing Array to Functions, Passing Pointers to Functions, Recursion

Text Input / Output: Files, Streams, Standard Library Input / Output Functions, Formatting Input / Output Functions, Character Input / Output Functions

Binary Input / **Output:** Text versus Binary Streams, Standard Library, Functions for Files, Converting File Type.

TEXT BOOKS:

- 1. Programming for Problem Solving, Behrouz A. Forouzan, Richard F.Gilberg, CENGAGE
- 2. The C Programming Language, Brian W.Kernighan, Dennis M. Ritchie, 2e, Pearson

REFERENCES:

- 1. Computer Fundamentals and Programming, Sumithabha Das, McGrawHill
- 2. Programming in C, Ashok N. Kamthane, AmitKamthane, Pearson
- 3. Computer Fundamentals and Programming in C, PradipDey, ManasGhosh,OXFORD

COURSE OUTCOMES:

Upon the completion of the course the student will learn

- To write algorithms and to draw flowcharts forsolvingproblems
- To convert flowcharts/algorithms to C Programs, compile and debugprograms
- To use different operators, data types and write programs that use two-way/ multiway selection
- To select the best loop construct for agivenproblem
- To design and implement programs to analyze the different pointer applications
- To decompose a problem into functions and to develop modularreusablecode
- To apply FileI/Ooperations.

AMERICA STREET

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

I Year - I Semester		L	Т	Р	С
		2	0	2	3
	ENGINEERING DRAWING				

Course Objective:

Engineering drawing being the principal method of communication for engineers, the objective is to introduce the students, the techniques of constructing the various types of polygons, curves and scales. The objective is also to visualize and represent the 3D objects in 2D planes with proper dimensioning, scaling etc.

Unit I

Objective: To introduce the students to use drawing instruments and to draw polygons, Engg. Curves.

Polygons: Constructing regular polygons by general methods, inscribing and describing polygons on circles.

Curves: Parabola, Ellipse and Hyperbola by general and special methods, cycloids, involutes, tangents & normals for the curves.

Scales: Plain scales, diagonal scales and vernier scales

Unit II

Objective: To introduce the students to use orthographic projections, projections of points & simple lines. To make the students draw the projections of the lines inclined to both the planes.

Orthographic Projections: Reference plane, importance of reference lines, projections of points in various quadrants, projections of lines, line parallel to both the planes, line parallel to one plane and inclined to other plane.

Projections of straight lines inclined to both the planes, determination of true lengths, angle of inclination and traces.

Unit III

Objective: The objective is to make the students draw the projections of the plane inclined toboth the planes.

Projections of planes: regular planes perpendicular/parallel to one reference plane and inclined to the other reference plane; inclined to both the reference planes.

Unit IV

Objective: The objective is to make the students draw the projections of the various types of solids in different positions inclined to one of the planes.

Projections of Solids – Prisms, Pyramids, Cones and Cylinders with the axis inclined to both the planes.

Unit V

Objective: The objective is to represent the object in 3D view through isometric views. The student will be able to represent and convert the isometric view to orthographic view and vice versa.

Conversion of isometric views to orthographic views; Conversion of orthographic views to isometric views.

Computer Aided Design, Drawing practice using Auto CAD, Creating 2D&3D drawings of objects using Auto CAD

Note: In the End Examination there will be no question from CAD.

TEXT BOOKS:

- 1. Engineering Drawing by N.D. Butt, Chariot Publications
- 2. Engineering Drawing by Agarwal & Agarwal, Tata McGraw Hill Publishers

REFERENCE BOOKS:

- 1. Engineering Drawing by K.L.Narayana & P. Kannaiah, Scitech Publishers
- 2. Engineering Graphics for Degree by K.C. John, PHI Publishers
- 3. Engineering Graphics by PI Varghese, McGrawHill Publishers
- 4. Engineering Drawing + AutoCad K Venugopal, V. Prabhu Raja, New Age

Course Outcome: The student will learn how to visualize 2D & 3D objects.

I Year - I Semester		L	Т	Р	С
1 1 ear - 1 Semester		0	0	3	1.5
E	NGLISH COMMUNICATION SKILLS LABORA	TORY			

TOPICS

UNIT I:

Vowels, Consonants, Pronunciation, Phonetic Transcription, Common Errors in Pronunciation,

UNIT II:

Word stress-di-syllabic words, poly-syllabic words, weak and strong forms, contrastive stress (Homographs)

UNIT III:

Stress in compound words, rhythm, intonation, accent neutralisation.

UNIT IV:

Listening to short audio texts and identifying the context and specific pieces of information toanswer a series of questions in speaking.

UNIT V:

Newspapers reading;Understanding and identifying key terms and structures useful for writing reports.

Prescribed text book: "Infotech English", Maruthi Publications.

References:

- 1. Exercises in Spoken English Part 1,2,3,4, OUP and CIEFL.
- 2. English Pronunciation in use- Mark Hancock, Cambridge University Press.
- 3. English Phonetics and Phonology-Peter Roach, Cambridge University Press.
- 4. English Pronunciation in use- Mark Hewings, Cambridge University Press.
- 5. English Pronunciation Dictionary- Daniel Jones, Cambridge University Press.
- 6. English Phonetics for Indian Students- P. Bala Subramanian, Mac Millan Publications.

ALINEHRU TECHNOLOGICAL

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

I Year - I Semester		L	Т	Р	С
1 Year - I Semester		0	0	3	1.5
	APPLIED CHEMISTRY LAB				

Introduction to Chemistry laboratory – Molarity, normality, primary, secondary standard solutions, volumetric titrations, quantitative analysis

- 1. Determination of HCl using standard Na₂CO₃ solution.
- 2. Determination of alkalinity of a sample containing Na₂CO₃ and NaOH.
- 3. Determination of Mn^{+2} using standard oxalic acid solution.
- 4. Determination of ferrous iron using standard K₂Cr₂O₇ solution.
- 5. Determination of Cu^{+2} using standard hypo solution.
- 6. Determination of temporary and permanent hardness of water using standard EDTA solution.
- 7. Determination of Fe^{+3} by a colorimetric method.
- 8. Determination of the concentration of acetic acid using sodium hydroxide (pH-metry method).
- 9. Determination of iso-electric point of amino acids using pH-metry method/conductometric method.
- 10. Determination of the concentration of strong acid vs strong base (by conductometric method).
- 11. Determination of strong acid vs strong base (by potentiometric method).
- 12. Determination of Mg^{+2} present n an antacid.
- 13. Determination of CaCO₃ present in an egg shell.
- 14. Estimation of Vitamin C.
- 15. Determination of phosphoric content in soft drinks.
- 16. Adsorption of acetic acid by charcoal.
- 17. Preparation of nylon-6, 6 and Bakelite (demonstration only).

Of the above experiments at-least 10 assessment experiments should be completed in a semester.

Outcomes: The students entering into the professional course have practically very little exposure to lab classes. The experiments introduce volumetric analysis; redox titrations with different indicators; EDTA titrations; then they are exposed to a few instrumental methods of chemical analysis. Thus at the end of the lab course, the student is exposed to different methods of chemical analysis and use of some commonly employed instruments. They thus acquire some experimental skills.

Reference Books

1. A Textbook of Quantitative Analysis, Arthur J. Vogel.

I Year - I Semester	L	Т	Р	С
1 Year - I Semester	0	0	3	1.5

PROGRAMMING FOR PROBLEM SOLVING USING C LAB

Course Objectives:

- 1) Apply the principles of C language inproblemsolving.
- 2) To design flowcharts, algorithms and knowing how todebugprograms.
- 3) To design & develop of C programs using arrays, strings pointers&functions.
- 4) To review the file operations, preprocessor commands.

Exercise 1:

- 1. Write a C program to print a block F using hash (#), where the F has a height of six characters and width of five and four characters.
- 2. Write a C program to compute the perimeter and area of a rectangle with a height of 7 inches and width of 5 inches.
- 3. Write a C program to displaymultiplevariables.

Exercise 2:

- 1. Write a C program to calculate the distance between thetwopoints.
- 2. Write a C program that accepts 4 integers p, q, r, s from the user where r and s are positive and p is even. If q is greater than r and s is greater than p and if the sum of r and s is greater than the sum of p and q print "Correct values", otherwise print "Wrongvalues".

Exercise 3:

- 1. Write a C program to convert a string to alonginteger.
- 2. Write a program in C which is a Menu-Driven Program to compute the area of the variousgeometricalshape.
- 3. Write a C program to calculate the factorial of agivennumber.

Exercise 4:

- 1. Write a program in C to display the n terms of even natural number and theirsum.
- 2. Write a program in C to display the n terms of harmonic series and their sum. $1 + 1/2 + 1/3 + 1/4 + 1/5 \dots 1/n$ terms.
- 3. Write a C program to check whether a given number is an Armstrong numberornot. *Exercise 5:*
 - 1. Write a program in C to print all unique elements inanarray.
 - 2. Write a program in C to separate odd and even integers inseparatearrays.
 - 3. Write a program in C to sort elements of array inascendingorder.

Exercise 6:

- 1. Write a program in C for multiplication of two squareMatrices.
- 2. Write a program in C to find transpose of agivenmatrix.

Exercise 7:

- 1. Write a program in C to search an element in a row wise and column wise sorted matrix.
- 2. Write a program in C to print individual characters of string inreverseorder.

Exercise 8:

- 1. Write a program in C to compare two strings without using string libraryfunctions.
- 2. Write a program in C to copy one string to another string.

Exercise 9:

- 1. Write a C Program to Store Information Using Structures with
 - Dynamically Memory Allocation
- 2. Write a program in C to demonstrate how to handle the pointers intheprogram.

Exercise 10:

- 1. Write a program in C to demonstrate the use of & (address of) and *(value at address)operator.
- 2. rite a program in C to add two numbersusingpointers.

Exercise 11:

- 1. Write a program in C to add numbers using callbyreference.
- 2. Write a program in C to find the largest element using DynamicMemoryAllocation.

Exercise 12:

- 1. Write a program in C to swap elements using callbyreference.
- 2. Write a program in C to count the number of vowels and consonants in a string using apointer.

Exercise 13:

- 1. Write a program in C to show how a function returning pointer.
- 2. Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using malloc()function.

Exercise 14:

- 1. Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using calloc() function. Understand the difference between the abovetwoprograms
- 2. Write a program in C to convert decimal number to binary number using the function.

Exercise 15:

- 1. Write a program in C to check whether a number is a prime number or not using the function.
- 2. Write a program in C to get the largest element of an array using the function.

Exercise 16:

- 1. Write a program in C to append multiple lines at the end of atextfile.
- 2. Write a program in C to copy a file inanothername.
- 3. Write a program in C to remove a file fromthedisk.

Course Outcomes:

By the end of the Lab, the student

- 1) Gains Knowledge on various concepts of aClanguage.
- 2) Able to draw flowcharts and write algorithms.
- 3) Able design and development of C problemsolvingskills.
- 4) Able to design and develop modularprogrammingskills.
- 5) Able to trace and debugaprogram

I Year - II Semester		L	Т	Р	С
1 Fear - 11 Semester		3	0	0	3
	MATHEMATICS-II				

Course Objectives:

- To instruct the concept of Matrices in solving linear algebraic equations
- To elucidate the different numerical methods to solve nonlinear algebraic equations
- To disseminate the use of different numerical techniques for carrying out numerical integration.
- To equip the students with standard concepts and tools at an intermediate to advanced level • mathematics to develop the confidence and ability among the students to handle various real world problems and their applications.

Course Outcomes: At the end of the course, the student will be able to

- develop the use of matrix algebra techniques that is needed by engineers for practical applications (L6)
- solve system of linear algebraic equations using Gauss elimination, Gauss Jordan, Gauss Seidel (L3)
- evaluate the approximate roots of polynomial and transcendental equations by different • algorithms (L5)
- apply Newton's forward & backward interpolation and Lagrange's formulae for equal and • unequal intervals (L3)
- apply numerical integral techniques to different Engineering problems (L3)
- apply different algorithms for approximating the solutions of ordinary differential equations with initial conditions to its analytical computations (L3)

UNIT – I: Solving systems of linear equations, Eigen values and Eigen vectors: (10hrs)

Rank of a matrix by echelon form and normal form - Solving system of homogeneous and nonhomogeneous linear equations - Gauss Eliminationmethod - Eigen values and Eigen vectors and properties (article-2.14 in text book-1).

Unit – II: Cayley–Hamilton theorem and Quadratic forms:

Cayley-Hamilton theorem (without proof) - Applications - Finding the inverse and power of a matrix by Cayley-Hamilton theorem - Reduction to Diagonal form - Quadratic forms and nature of the quadratic forms – Reduction of quadratic form to canonical forms by orthogonal transformation. Singular values of a matrix, singular value decomposition (text book-3).

UNIT – III: Iterative methods:

Introduction-Bisection method-Secant method - Method of false position-Iteration method -Newton-Raphson method (One variable and simultaneous Equations) - Jacobi and Gauss-Seidel methods for solving system of equations numerically.

UNIT – IV: Interpolation:

Introduction- Errors in polynomial interpolation - Finite differences- Forward differences-Backward differences - Central differences - Relations between operators - Newton's forward and backward formulae for interpolation – Interpolation with unequal intervals – Lagrange's interpolation formula- Newton's divide difference formula.

(8 hrs)

(**10hrs**)

(10 hrs)

UNIT – V: Numerical differentiation and integration, Solution of ordinary differential equations with initial conditions: (10 hrs)

Numerical differentiation using interpolating polynomial – Trapezoidal rule– Simpson's 1/3rd and 3/8th rule– Solution of initial value problems by Taylor's series– Picard's method of successive approximations– Euler's method – Runge-Kutta method (second and fourth order).

Text Books:

- 1. B. S. Grewal, Higher Engineering Mathematics, 44th Edition, Khanna Publishers.
- **2. B. V. Ramana**, Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.
- 3. David Poole, Linear Algebra- A modern introduction, 4th Edition, Cengage.

Reference Books:

- **1. Steven C. Chapra,** Applied Numerical Methods with MATLAB for Engineering and Science, Tata Mc. Graw Hill Education.
- **2.** M. K. Jain, S.R.K. Iyengar and R.K. Jain, Numerical Methods for Scientific and Engineering Computation, New Age International Publications.
- 3. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press.

I Year - II Semester	L	Т	Р	С
1 Year - 11 Semester	3	0	0	3
APPLIED	PHYSICS			

Unit-I: Wave Optics

12hrs

8hrs

Interference: Principle of superposition –Interference of light - Interference in thin films (Reflection Geometry) & applications - Colors in thin films- Newton's Rings-Determination of wavelength and refractive index.

Diffraction: Introduction - Fresnel and Fraunhofer diffraction - Fraunhofer diffraction due to single slit, double slit - N-slits (Qualitative) – Diffraction Grating - Dispersive power and resolving power of Grating(Qualitative).

Polarization: Introduction-Types of polarization - Polarization by reflection, refraction and Double refraction - Nicol's Prism -Half wave and Quarter wave plates.

Unit Outcomes:

The students will be able to

- **Explain** the need of coherent sources and the conditions for sustained interference(L2)
- Identify engineering applications of interference(L3)
- > Analyze the differences between interference and diffraction with applications(L4)
- > **Illustrate** the concept of polarization of light and its applications(L2)
- Classify ordinary polarized light and extraordinary polarized light(L2)

Unit-II: Lasers and Fiberoptics

Lasers: Introduction – Characteristics of laser – Spontaneous and Stimulated emissions of radiation – Einstein's coefficients – Population inversion – Lasing action - Pumping mechanisms – Ruby laser – He-Ne laser - Applications of lasers.

Fiber optics: Introduction –Principle of optical fiber- Acceptance Angle - Numerical Aperture - Classification of optical fibers based on refractive index profile and modes – Propagation of electromagnetic wave through optical fibers - Applications.

Unit Outcomes:

The students will be able to

- Understand the basic concepts of LASER light Sources(L2)
- > Apply the concepts to learn the types of lasers(L3)
- Identifies the Engineering applications of lasers(L2)
- **Explain** the working principle of optical fibers(L2)
- Classify optical fibers based on refractive index profile and mode of propagation(L2)
- > **Identify** the applications of optical fibers in various fields(L2)

Unit III: Quantum Mechanics, Free Electron Theory andBand theory 10hrs **Quantum Mechanics:** Dual nature of matter – Heisenberg's Uncertainty Principle – Significance and properties of wave function – Schrodinger's time independent and dependent wave equations– Particle in a one-dimensional infinite potential well.

Free Electron Theory: Classical free electron theory (Qualitative with discussion of merits and demerits) – Quantum free electron theory– Equation for electrical conductivity based on quantum free electron theory- Fermi-Dirac distribution- Density of states (3D) - Fermi energy.

Band theory of Solids: Bloch's Theorem (Qualitative) - Kronig - Penney model (Qualitative)- E vs K diagram - v vs K diagram - effective mass of electron – Classification of crystalline solids–concept of hole.

Unit Outcomes:

The students will be able to

- **Explain** the concept of dual nature of matter(L2)
- Understand the significance of wave function(L2)
- > **Interpret** the concepts of classical and quantum free electron theories(L2)
- **Explain** the importance of K-Pmodel
- Classify the materials based on band theory(L2)
- > Apply the concept of effective mass of electron(L3)

Unit-IV: Dielectric and Magnetic Materials

DielectricMaterials: Introduction - Dielectric polarization - Dielectric polarizability, Susceptibility and Dielectric constant - Types of polarizations- Electronic (Quantitative), Ionic (Quantitative) and Orientation polarizations (Qualitative) - Lorentz internal field-Clausius- Mossotti equation-Piezoelectricity.

Magnetic Materials: Introduction - Magnetic dipole moment - Magnetization-Magnetic susceptibility and permeability - Origin of permanent magnetic moment - Classificationof

magnetic materials: Dia, para, Ferro, antiferro & Ferri magnetic materials - Domain concept for Ferromagnetism & Domain walls (Qualitative) - Hysteresis - soft and hard magnetic materials- Eddy currents- Engineering applications.

Unit Outcomes:

The students will be able to

- **Explain** the concept of dielectric constant and polarization in dielectric materials(L2)
- Summarize various types of polarization of dielectrics(L2)
- Interpret Lorentz field and Claussius- Mosotti relation indielectrics(L2)
- Classify the magnetic materials based on susceptibility and their temperature dependence (L2)
- **Explain** the applications of dielectric and magnetic materials(L2)
- > Apply the concept of magnetism to magnetic data storage devices(L3)

8hrs

10hrs

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Unit – V: SemiconductorsandSuperconductors

Semiconductors: Introduction- Intrinsic semiconductors – Density of charge carriers – Electrical conductivity – Fermi level – extrinsic semiconductors – density of charge carriers – dependence of Fermi energy on carrier concentration and temperature - Drift and diffusion currents – Einstein's equation- Hall effect – Hall coefficient –Applications of Hall effect.

Superconductors: Introduction – Properties of superconductors – Meissner effect – Type I and Type II superconductors – BCS theory (Qualitative) – Josephson effects (AC and DC) – SQUIDs – High T_c superconductors – Applications of superconductors.

Unit Outcomes:

The students will be able to

- Classify the energy bands of semiconductors(L2)
- Interpret the direct and indirect band gap semiconductors(L2)
- Identify the type of semiconductor using Hall effect(L2)
- Identify applications of semiconductors in electronic devices(L2)
- Classify superconductors based on Meissner's effect(L2)
- **Explain** Meissner's effect, BCS theory & Josephson effect in superconductors(L2)

Text books:

- M. N. Avadhanulu, P.G.Kshirsagar & TVS Arun Murthy" A Text book of Engineering Physics"-S.Chand Publications, 11th Edition2019.
- 2. Engineering Physics" by D.K.Bhattacharya and Poonam Tandon, Oxford press(2015).
- 3. Applied Physics by P.K.Palanisamy SciTechpublications.

Reference Books:

- 1. Fundamentals of Physics Halliday, Resnick and Walker, John Wiley&Sons
- 2. Engineering Physics by M.R.Srinivasan, New Age international publishers(2009).
- 3. Shatendra Sharma, Jyotsna Sharma, "Engineering Physics", Pearson Education, 2018
- 4. Engineering Physics Sanjay D. Jain, D. Sahasrabudhe and Girish, UniversityPress
- 5. Semiconductor physics and devices- Basic principle Donald A, Neamen, Mc GrawHill
- 6. B.K. Pandey and S. Chaturvedi, Engineering Physics, CengageLearning

I Year - II Semester	L	Т	Р	С	
1 Year - 11 Semester		2	0	2	3
OBJECT ORIENTED PROGRAMMING THROUGH JAVA					

Course Objectives:

This subject will help to improve

- the analytical skills of object orientedprogramming
- Overall development of problem solving and criticalanalysis.
- Formal introduction to Java programminglanguage

Course Outcomes:

On successful completion of this course, the student should be able to:

- Show competence in the use of the Java programming language in the development of small to medium- sized application programs that demonstrate professionally acceptable coding and performancestandard
- Illustrate the basic principles of the object-orientedprogramming
- Demonstrate an introductory understanding of graphical user interfaces, multithreaded programming, and event-drivenprogramming.

<u>Unit I</u>

Introduction to Java : Basics of Java programming, Data types, Variables, Operators, Control structures including selection, Looping, Java methods, Overloading, Math class, Arrays in java.

Objects and Classes : Basics of objects and classes in java, Constructors, Finalizer, Visibility modifiers, Methods and objects, Inbuilt classes like String, Character, StringBuffer, File, this reference.

<u>Unit II</u>

Inheritance and Polymorphism : Inheritance in java, Super and sub class, Overriding, Object class, Polymorphism, Dynamic binding, Generic programming, Casting objects, Instance of operator, Abstract class, Interface in java, Package in java, UTILpackage.

<u>Unit III</u>

Event and GUI programming : Event handling in java, Event types, Mouse and key events, GUI Basics, Panels, Frames, Layout Managers: Flow Layout, Border Layout, Grid Layout, GUI components like Buttons, Check Boxes, Radio Buttons, Labels, Text Fields, Text Areas, Combo Boxes, Lists, Scroll Bars, Sliders, Windows, Menus, Dialog Box, Applet and its life cycle, Introduction to swing, Creating a swing applet, swing controls and components.

<u>Unit IV</u>

I/O programming: Text and Binary I/O, Binary I/O classes, Object I/O, Random Access Files. Event driven model, handling events

<u>Unit V</u>

Multithreading in java: Thread life cycle and methods, Runnable interface, Thread synchronization, Exception handling with try-catch-finally, Collections in java, Introduction to JavaBeans and Network Programming.

Text Books:

- 1) Introduction to Java Programming (Comprehensive Version), Daniel Liang, Seventh Edition, Pearson.
- 2) Programming in Java, SachinMalhotra&SaurabhChaudhary, Oxford University Press.

Reference Books:

- 1) Murach's Beginning Java 2, Doug Lowe, Joel Murach and Andrea Steelman, SPD.
- 2) Core Java Volume-I Fundamentals, Eight Edition, Horstmann& Cornell, Pearson Education.
- 3) The Complete Reference, Java 2 (Fourth Edition), Herbert Schild, TMH. Java Programming, D. S. Malik, CengageLearning.

ANA KINA DA

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

I Year - II Semester		С			
1 Tear - 11 Semester		3	0	0	3
	NETWORK ANALYSIS				

UNIT - I

Introduction to Electrical Circuits : Network elements classification, Electric charge and current, Electric energy and potential, Resistance parameter – series and parallel combination, Inductance parameter – series and parallel combination, Capacitance parameter – series and parallel combination. Energy sources: Ideal, Non-ideal, Independent and dependent sources, Source transformation, Kirchoff's laws, Mesh analysis and Nodal analysis problem solving with resistances only including dependent sources also. (Text Books: 1,2,3, Reference Books: 3)

Fundamentals and Network Topology: Definitions of terms associated with periodic functions: Time period, Angular velocity and frequency, RMS value, Average value, Form factor and peak factor- problem solving, Phase angle, Phasor representation, Addition and subtraction of phasors, mathematical representation of sinusoidal quantities, explanation with relevant theory, problem solving. Principal of Duality withexamples.

Network Topology: Definitions of branch, node, tree, planar, non-planar graph, incidence matrix, basic tie set schedule, basic cut set schedule. (Text Books: 2,3, Reference Books: 3)

UNIT – II

Transients: First order differential equations, Definition of time constants, R-L circuit, R-C circuit with DC excitation, Evaluating initial conditions procedure, second order differential equations, homogeneous, non-homogenous, problem solving using R-L-C elements with DC excitation and AC excitation, Response as related to s-plane rotation of roots. Solutions using Laplace transform method. (Text Books: 1,2,3, Reference Books: 1,3)

UNIT – III

Steady State Analysis of A.C Circuits: Impedance concept, phase angle, series R-L, R-C, R-L-C circuits problem solving. Complex impedance and phasor notation for R-L, R-C, R-L-C problem solving using mesh and nodal analysis, Star-Delta conversion, problem solving. (Text Books: 1,2, Reference Books: 3)

Coupled Circuits :Coupled Circuits: Self inductance, Mutual inductance, Coefficient of coupling, analysis of coupled circuits, Natural current, Dot rule of coupled circuits, Conductively coupled equivalent circuits- problem solving.

UNIT - IV

Resonance: Introduction, Definition of Q, Series resonance, Bandwidth of series resonance, Parallel resonance, Condition for maximum impedance, current in anti resonance, Bandwidth ofparallel resonance, general case-resistance present in both branches, anti resonance at all frequencies. (Text Books:2,3, Reference Books: 3)

Network Theorems: Thevinin's, Norton's, Milliman's, Reciprocity, Compensation, Substitution, Superposition,Max Power Transfer, Tellegens- problem solving using dependent sources also. (Text Books: 1,2,3, ReferenceBooks:2)

ALUEHRU TECHT

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UNIT – V

Two-port Networks: Relationship of two port networks, Z-parameters, Y-parameters, Transmission line parameters, h-parameters, Inverse h-parameters, Inverse Transmission line parameters, Relationship between parameter sets, Parallel connection of two port networks, Cascading of two port networks, series connection of two port networks, problem solving including dependent sources also. (Text Books: 1,2, Reference Books: 1,3)

TEXT BOOKS:

- 1. Network Analysis ME Van Valkenburg, Prentice Hall of India, 3rdEdition,2000.
- 2. Network Analysis by K.Satya Prasad and S Sivanagaraju, CengageLearning
- 3. Electric Circuit Analysis by Hayt and Kimmarle, TMH

REFERENCES:

- 1. Network lines and Fields by John. D. Ryder 2ndedition, Asiapublishinghouse.
- 2. Basic Circuit Analysis by DR Cunninghan, Jaico Publishers.
- 3. Network Analysis and Filter Design by Chadha, UmeshPublications.

COURSE OBJECTIVES:

- To understand the basic concepts on RLC circuits.
- To know the behavior of the steady states and transients states inRLCcircuits.
- To know the basic Laplace transforms techniques inperiods' waveforms.
- To understand the two portnetworkparameters.
- To understand the properties of LC networksandfilters.

COURSE OUTCOME:

- gain the knowledge on basic networkelements.
- will analyze the RLC circuits behaviorindetailed.
- analyze the performance of periodicwaveforms.
- gain the knowledge in characteristics of two port network parameters (Z,Y,ABCD,h&g).
- analyze the filter design concepts in realworldapplications.

I Year - II Semester		L	Т	Р	С
1 Tear - 11 Semester		3	0	0	3
	BASIC ELECTRICAL ENGINEERING				

Preamble:

This course covers various topics related to principle of operation and performance of various electrical machines.

Course Educational Objectives:

- To understand the principle of operation, constructional details and operational characteristics of DC generators.
- To understand the principle of operation, characteristics of DC motor. Methodsof starting and speed control methods ofDCmotors.
- To learn the constructional details, principle of operation and performance of transformers.
- To study the principle of operation, construction and details of synchronous machines.
- To learn the principle of operation, constructional details, performance, torque slip characteristics and starting methods of 3-phaseinductionmotors.

Unit I

DC Machines

Principle of operation of DC generator – emf equation – types of DC machines – torque equation of DC motor – applications – three point starter - losses and efficiency - swinburne's test - speed control methods – OCC of DC generator- Brake test on DC Shunt motor-numerical problems

Unit II

Transformers

Principle of operation of single phase transformer constructional features – EMF equation – Losses and efficiency of transformer- regulation of transformer – OC & SC tests predetermination of efficiency and regulations – Sumpner's test-NumericalProblems.

Unit III

Synchronous Generators

Principle of operation and construction of alternators – types of alternators Regulation of alternator by synchronous impedance method-EMF equation of three phase alternator

Synchronous Motors

Construction of three phase synchronous motor - operating principle –equivalent circuit of synchronous motor.

Unit IV

Induction Machine: Principle of operation and construction of three-phase induction motors – slip ring and squirrel cage motors – slip-torque characteristics – efficiency calculation – starting methods-Brake test on 3-Phase Induction Motor.

Unit V

Special Machines: Principle of operation and construction - single phase induction motor - shaded pole motors – capacitor motors and AC servomotor.

Course Outcomes:

- Able to explain the operation of DC generator and analyze the characteristics of DC generator.
- Able to explain the principle of operation of DC motor and analyze their characteristics. Acquire the skills to analyze the starting and speed control methods of DC motors.
- Ability to analyze the performance and speed torque characteristics of a3phase induction motor and understand starting methods of 3phaseinductionmotor.
- Able to explain the operation of Synchronous Machines
- Capability to understand the operation of variousspecialmachines.

TEXT BOOKS:

- 1. Principles of Electrical Machines by V.K. Mehta & Rohit Mehta, S.Chandpublications
- 2. Theory & performance of Electrical Machines by J.B.Guptha, S.K.Kataria&Sons

REFERENCE BOOKS:

1.Basic Electrical Engineering by M.S.Naidu and S.Kamakshiah, TMH Publications

2.Fundamentals of Electrical Engineering by Rajendra Prasad, PHI Publications, 2nd edition

3. Basic Electrical Engineering by Nagsarkar, Sukhija, Oxford Publications, 2ndedition

I Year - II Semester	L	Т	Р	С
1 Tear - 11 Semester	0	0	3	1.5
ELECTRONIC WORKSHOP LA	B			

- I. Identificationofcomponents
- II. Laboratoryequipment
- III. Solderingpractice
- IV. PCBLayout
- V. TestingofComponents
- VI. CRO

I. Identificationofcomponents:

- Resistors:- Types of Resistors, Value of Resistance using colorcode, DRBS.
- Capacitors:- Types of capacitors, value of capacitance using colorcode, DCBS.
- Inductors:- Types ofInductors,DLB
- Rheostats:- Types of Rheostats, Types of potentiometers, Relays.
- Switches:- TypesofSwitches.
- Cables: TypesofCables.
- Types ofInstrumentsused.

Identification of active elements.

(Two Terminal, Three Terminal Devices)

- (SC diode, Zenerdiode, D.AC)
- Three Terminal Devices: BJT, UJT, SCR, FET, MOSFET, TRIAC.
- Digital and Analog ICs. (TO and Flat packages) ICregulatorstypes.
- Testing of above components usingMultimeter.

II. LaboratoryEquipment:

A) Meters:-

- Types of Voltmeters, Types of Ammeters both AnalogandDigital.
- Types of Multi meters (Analog&Digital)
- AVO Meters.
- FETinputVoltmeter.
 - B) Laboratory Function Generators and AudioOscillators.
 - C) PowerSupplies.
 - D) RFgenerators.
 - E) Different TypesofTransformers. (Power, AF, RF, etc.)

III. Solderingpractice

Tools kit including soldering iron Tools Kit:

- Insulatednoseplayer
- Insulatedcuttingplayer
- Screw driverkit
- Electricaltester
- Soldering iron,Lead,Flex

IV. PCB layoutandDesign. Materials required, centimeter graph sheets, marker.

V. Testing of Components. Active and Passive Components

VI. CRO

Acquaintance with CRO Measurements on CRO

I Year - II Semester		L	T	Р	С	
		0	0	3	1.5	
BASIC ELECTRICAL ENGINEERING LAB						

Learning Objectives:

- To plot the magnetizing characteristics of DC shunt generator and understand the mechanism of self-excitation.
- To control the speed ofDCmotors.
- To determine and predetermine the performance of DC machines.
- To predetermine the efficiency and regulation of transformers and assess their performance.
- To analyse performance of three phase induction motor.
- To understand the significance of regulation of an alternators using synchronousimpedance method.

Any ten of the following experiments are to be conducted

- 1. Magnetization characteristics of D.C. Shunt generator.
- 2. Speed control of D.C.shuntmotor.
- 3. Brake test on DCshuntmotor.
- 4. Swinburne's test onDCmachine
- 5. Load test on DCshuntgenerator
- 6. Load test on DCseriesgenerator.
- 7. Separation of losses iun DCShuntmotor
- 8. OC & SC tests onsingle-phasetransformer
- 9. Sumpner's test on singlephasetransformer
- 10. Brake test on 3-phase Inductionmotor.
- 11. Regulation of alternator by synchronousimpedancemethod.

Learning Outcomes:

The student should be able to:

- Determine and predetermine the performance of DC machinesandtransformers.
- Control the DC shunt machines.
- Compute the performance of 1-phase transformer.
- Perform tests on 3-phase induction motor and alternator to determine their performance characteristics.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA - 533 003, Andhra Pradesh, India **DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING** (Any 10 of the following listed experiments)

I Year - II Semester		L T	Р	С	
		0	0	3	1.5
	APPLIED PHYSICS LABORATORY				

List of Applied Physics Experiments

- 1. Determination of thickness of thin object by wedgemethod.
- 2. Determination of radius of curvature of a given plano convex lens by Newton'srings.
- 3. Determination of wavelengths of different spectral lines in mercury spectrum using diffraction grating in normal incidence configuration.
- 4. Determination of dispersive power of theprism.
- 5. Determination of dielectric constant using charging and dischargingmethod.
- 6. Study the variation of B versus H by magnetizing the magnetic material (B-Hcurve).
- 7. Determination of numerical aperture and acceptance angle of an optical fiber.
- 8. Determination of wavelength of Laser light using diffractiongrating.
- 9. Estimation of Planck's constant using photoelectriceffect.
- 10. Determination of the resistivity of semiconductor by four probemethod.
- 11. To determine the energy gap of a semiconductor using p-n junctiondiode.
- 12. Magnetic field along the axis of a current carrying circular coil by Stewart & Gee's Method
- 13. Determination of Hall voltage and Hall coefficient of a given semiconductor usingHall Effect.
- 14. Measurement of resistance of a semiconductor with varyingtemperature.
- 15. Resistivity of a Superconductor using four probe method & Meissnereffect.

References:

S. Balasubramanian, M.N. Srinivasan "A Text Book of Practical Physics"- S Chand Publishers, 2017.

I Year - II Semester		L	Т	Р	С
		3	0	0	0
	ENVIRONMENTAL SCIENCE				

Course Objective:

Engineering drawing being the principal method of communication for engineers, the objective is to introduce the students, the techniques of constructing the various types of polygons, curves and scales. The objective is also to visualize and represent the 3D objects in 2D planes with proper dimensioning, scaling etc.

Unit I

Objective: To introduce the students to use drawing instruments and to draw polygons, Engg. Curves.

Polygons: Constructing regular polygons by general methods, inscribing and describing polygons on circles. **Curves:** Parabola, Ellipse and Hyperbola by general and special methods, cycloids, involutes, tangents & normals for the curves.

Scales: Plain scales, diagonal scales and vernier scales

Unit II

Objective: To introduce the students to use orthographic projections, projections of points & simple lines. To make the students draw the projections of the lines inclined to both the planes.

Orthographic Projections: Reference plane, importance of reference lines, projections of points in various quadrants, projections of lines, line parallel to both the planes, line parallel to one plane and inclined to other plane.

Projections of straight lines inclined to both the planes, determination of true lengths, angle of inclination and traces.

Unit III

Objective: The objective is to make the students draw the projections of the plane inclined toboth the planes. Projections of planes: regular planes perpendicular/parallel to one reference plane and inclined to the other reference plane; inclined to both the reference planes.

Unit IV

Objective: The objective is to make the students draw the projections of the various types of solids in different positions inclined to one of the planes.

Projections of Solids – Prisms, Pyramids, Cones and Cylinders with the axis inclined to both the planes.

Unit V

Objective: The objective is to represent the object in 3D view through isometric views. The student will be able to represent and convert the isometric view to orthographic view and vice versa.

Conversion of isometric views to orthographic views; Conversion of orthographic views to isometric views. Computer Aided Design, Drawing practice using Auto CAD, Creating 2D&3D drawings of objects using Auto CAD

Note: In the End Examination there will be no question from CAD.

TEXT BOOKS:

- 1. Engineering Drawing by N.D. Butt, Chariot Publications
- 2. Engineering Drawing by Agarwal & Agarwal, Tata McGraw Hill Publishers

REFERENCE BOOKS:

- 1. Engineering Drawing by K.L.Narayana& P. Kannaiah, Scitech Publishers
- 2. Engineering Graphics for Degree by K.C. John, PHI Publishers
- 3. Engineering Graphics by PI Varghese, McGrawHill Publishers
- 4. Engineering Drawing + AutoCad K Venugopal, V. Prabhu Raja, New Age

Course Outcome: The student will learn how to visualize 2D & 3D objects.

II Year-I Semester		L	Т	Р	С	
		3	1	0	3	

ELECTRONIC DEVICES AND CIRCUITS

CourseObjectives:

Themain objectives of this courseare

- To learn and understand the basic concepts of semi conductor physics.
- Study the physical phenomena such as conduction, transport mechanism and electrical characteristics of different diodes.
- To learn and understand the application of diodes as rectifiers with their operation and characteristics with and without filters are discussed.
- Acquire knowledge about the principle of working and operation of Bipolar Junction Transistor and Field Effect Transistor and their characteristics.
- To learn and understand the purpose of transist or biasing and its significance.
- Small signal equivalent circuit analysis of BJT and FET transist or amplifiers and compare different configurations.

UNIT-I: Review of Semiconductor Physics: Hall effect, continuity equation, law of junction, FermiDiracfunction, Fermilevel in intrinsic and extrinsicSemiconductors

Junction Diode Characteristics : energy band diagram of PN junction Diode, Open circuited p-n junction, Biased p-n junction, p-n junction diode, current components in PN junction Diode, diodeequation, V-ICharacteristics, temperature dependence on V-ICharacteristics, Dioderesistance, Diodecapacitance.

UNIT-II:

SpecialSemiconductorDevices:ZenerDiode,Breakdownmechanisms,Zenerdiodeapplications, LED,VaractorDiode,Photodiode,TunnelDiode,UJT,PN-PNDiode,SCR.Construction,operation and V-Icharacteristics.

Rectifiers and Filters: Basic Rectifier setup, half wave rectifier, full wave rectifier, bridgerectifier, derivations of characteristics of rectifiers, rectifier circuits-operation, input and outputwaveforms, Filters, Inductor filter(Series inductor), Capacitor filter(Stunt inductor), π -Filter, comparison for various filtercircuits in terms of ripple factors.

UNIT-III: Transistor Characteristics:

BJT:Junctiontransistor,transistorcurrentcomponents,transistorequation,transistorconfiguratio ns, transistor as an amplifier, characteristics of transistor in Common Base, CommonEmitter and Common Collector configurations, Ebers-Moll model of a transistor, punch through/reachthrough, Photo transistor,typical transistor junction voltagevalues.

FET: FET types, construction, operation, characteristicsµ, g_m, r_dparameters, MOSFET-types, construction, operation, characteristics, comparisonbetween JFETand MOSFET.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533 003, Andhra Pradesh, India

DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UNIT- IV: Transistor Biasing and Thermal Stabilization : Need for biasing, operating point,load line analysis, BJT biasing- methods, basic stability, fixed bias, collector to base bias,

selfbias,StabilizationagainstvariationsinV_{BE},Ic,andβ,Stabilityfactors,(S,S['],S^{''}),Biascompensati on,Thermalrunaway, Thermal stability.

FETBiasing-methodsandstabilization.

UNIT-V: Small Signal Low Frequency Transistor Amplifier Models:

BJT: Two port network, Transistor hybrid model, determination of h-parameters, conversion ofh-parameters, generalized analysis of transistor amplifier model using h-parameters, Analysis ofCB, CE and CC amplifiers using exact and approximate analysis, Comparison of transistoramplifiers.

FET: Generalized analysis of small signal model, Analysis of CG, CS and CD amplifiers, comparison of FET amplifiers.

TextBooks:

- 1. Electronic Devices and Circuits-J.Millman, C.Halkias, TataMc-GrawHill, Second Edition, 2007
- 2. Electronic Devices and Circuits-K. Lal Kishore, BS Publications, Fourth Edition, 2016.
- 3.Electronics devices & circuit theory-Robert L.Boylestad and Loui Nashelsky, Pearson / Prenticehall, tenthedition, 2009

References:

- 1. Integrated Electronics-J. Millman, C. Halkias, Tata Mc-Graw Hill, Second Edition, 2009
- 2. 2. Electronic Devices and Integrated Circuits B.P. Singh, Rekha , Pearson publications
- 3. 3. ElectronicDevicesandCircuits-Salivahanan,Kumar,Vallavaraj,TataMc-GrawHill, 4thEdition,2008.

CourseOutcomes:

At the endofthis course the student will be able to

- □ Applythebasicconceptsofsemiconductorphysics.
- □ Understandthe formationofp-njunctionandhowitcanbeusedasapnjunctionas diodeindifferentmodes of operation.
- □ Knowtheconstruction, workingprincipleofrectifiers with and without filters with relevant expressions and necessary comparisons.
- Understandtheconstruction, principle of operation of transistors, BJT and FET with the irV-Icharacteristics in different configurations.
- □ Know the need of transistor biasing, various biasing techniques for BJT and FETandstabilization concepts with necessary expressions.
- Perform the analysis of small signal low frequency transistor amplifier circuit susing BJ Tand FET indifferent configurations

ALINEHRU TECHNOLOGICA

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

II Year - I Semester		L	Т	Р	С			
		3	1	0	3			
SWITCHING THEORYAND LOGIC DESIGN								

Course Objectives:

- To solve a typical number base conversion and analyze new error codingtechniques.
- Theorems and functions of Boolean algebra and behavior of logicgates.
- To optimize logic gates for digital circuits using varioustechniques.
- Boolean function simplification using Karnaugh maps and Quine-McCluskeymethods.
- To understand concepts of combinational circuits.
- To develop advanced sequential circuits.

UNIT - I

REVIEW OF NUMBER SYSTEMS & CODES:

Representation of numbers of different radix, conversation from one radix to another radix, r-1's compliments and r's compliments of signed members.Gray code ,4 bit codes; BCD, Excess-3, 2421, 84-2-1 code etc. Error detection & correction codes: parity checking, even parity, odd parity, Hamming code.

BOOLEAN THEOREMS AND LOGIC OPERATIONS:

Boolean theorems, principle of complementation & duality, De-morgan theorems.Logic operations ; Basic logic operations -NOT, OR, AND, Universal Logic operations, EX-OR, EX- NOR operations.Standard SOP and POS Forms, NAND-NAND and NOR-NOR realizations, Realization of three level logic circuits. Study the pin diagram and obtain truth table for the following relevant ICs 7400,7402,7404,7408,7432,7486.

UNIT – II

MINIMIZATION TECHNIQUES:

Minimization and realization of switching functions usingBoolean theorems, K-Map (up to 6 variables) and tabular method(Quine-mccluskey method) with only four variables and single function.

COMBINATIONAL LOGIC CIRCUITS DESIGN:

Design of Half adder, full adder, half subtractor, full subtractor, applications of full adders; 4-bit adder-subtractor circuit, BCD adder circuit, Excess 3 adder circuit and carry look-ahead adder circuit, Design code converts using Karnaugh method and draw the complete circuit diagrams.

UNIT – III

COMBINATIONAL LOGIC CIRCUITS DESIGN USING MSI &LSI :

Design of encoder ,decoder, multiplexer and de-multiplexers, Implementation of higher order circuits using lower order circuits . Realization of Boolean functions using decoders and multiplexers.Design of Priority encoder, 4-bit digital comparator and seven segment decoder. . Study the relevant ICs pin diagrams and their functions 7442,7447,7485,74154.

INTRODUCTION OF PLD's:

PLDs:PROM, PAL, PLA -Basics structures, realization of Boolean functions, Programming table.

UNIT - IV

SEQUENTIAL CIRCUITS I:

Classification of sequential circuits (synchronous and asynchronous), operation of NAND & NOR Latches and flip-flops; truth tables and excitation tables of RS flip-flop, JK flip-flop, T flip-flop, D flip-flop with reset and clear terminals. Conversion from one flip-flop toanother flip- flop. Design of 5ripple counters, design of synchronous counters, Johnson counter, ring counter. Design of registers - Buffer register, control buffer register, shift register, bi-directional shift register, universal shift, register.

Study the following relevant ICs and their relevant functions 7474,7475,7476,7490,7493,74121.

UNIT - V

SEQUENTIAL CIRCUITS II :

Finite state machine; state diagrams, state tables, reduction of state tables. Analysis of clocked sequential circuits Mealy to Moore conversion and vice-versa. Realization of sequence generator, Design of Clocked Sequential Circuit to detect the given sequence (with overlapping or without overlapping).

TEXT BOOKS:

- 1. Switching and finite automata theory Zvi.KOHAVI,Niraj.K.Jha 3rdEdition,Cambridge UniversityPress,2009
- 2. Digital Design by M.MorrisMano, Michael D Ciletti, 4th editionPHIpublication, 2008
- 3. Switching theory and logic design by Hill and Peterson, Mc-Graw Hill TMH edition, 2012.

REFERENCES:

- 1. Fundamentalsof Logic Design by Charles H. Roth Jr, JaicoPublishers, 2006
- 2. Digital electronics by R S Sedha.S.Chand & companylimited, 2010
- 3. Switching Theory and Logic Design by A. AnandKumar, PHI Learningpvtltd, 2016.
- 4. Digital logic applications and design by John M Yarbough, Cengagelearning, 2006.
- 5. TTL 74-Seriesdatabook.

Course Outcomes:

- Classify different number systems and apply to generatevariouscodes.
- Use the concept of Boolean algebra in minimization of switching functions
- Design different types of combinationallogiccircuits.
- Apply knowledge of flip-flops in designing of Registersandcounters
- The operation and design methodology for synchronous sequential circuits and algorithmic statemachines.
- Produce innovative designs by modifying the traditional design techniques.

		L	Т	Р	С
II Year-I Semester		3	1	0	3
	SIGNALS AND SYSTEMS				

CourseObjectives:

Themain objectives of thiscoursearegiven below:

- Tostudyabout signalsand systems.
- ToanalyzethespectralcharacteristicsofsignalusingFourierseriesandFouriertransforms.
- Tounderstandthecharacteristicsofsystems.
- Tointroducetheconceptofsampling process
- Toknowvarious transformtechniquestoanalyzethesignals and systems.

UNIT- I: INTRODUCTION: Definition of Signals and Systems, Classification of Signals, Classification of Systems, Operations on signals: time-shifting, time-scaling, amplitude-shifting, amplitude-scaling. Problems on classification and characteristics of Signals and Systems. Complex exponential and sinusoidal signals, Singularity functions and related functions: impulse function, step function signum function and ramp function. Analogy between vectors and signals, orthogonal signal space, Signal approximation using orthogonalfunctions, Mean square error, closed or complete set of orthogonal functions, Orthogonality incomplex functions. Related problems.

UNIT-II: FOURIER SERIES AND FOURIER TRANSFORM:

Fourier series representation of continuous time periodic signals, properties of Fourier series, Dirichlet's conditions, Trigonometric Fourier series and Exponential Fourier series, Relationbetween Trigonometric and Exponential Fourier series, Complex Fourier spectrum. Deriving Fourier transform from Fourier series, Fourier transform of arbitrary signal, Fourier transform of standard signals, Fourier transform of periodic signals, properties of Fourier transforms, Fourier transforms involving impulse function and Signum function. Introduction to Hilbert Transform, Related problems.

UNIT-III: ANALYSIS OF LINEAR SYSTEMS: Introduction, Linear system, impulseresponse, Response of a linear system, Linear time invariant (LTI) system, Linear time variant (LTV)system, Concept of convolution in time domain and frequency domain, Graphical representation of convolution, Transfer function of a LTIsystem, Related problems. Filter characteristics of linear systems. Distortion less transmission through asystem, Signal bandwidth, system bandwidth, Ideal LPF, HPF and BPF characteristics, Causality and Poly-Wiener criterion for physical realization, relationship between bandwidthand risetime.

UNIT-IV:

CORRELATION: Auto-correlation and cross-correlation of functions, properties of correlation function, Energy density spectrum, Parseval's theorem, Power density spectrum, Relation between Convolution and correlation, Detection of periodic signals in the presence of noise by correlation, Extraction of signal from noise by filtering.

SAMPLINGTHEOREM: Graphical and analytical proof for Band Limited Signals, impulse sampling, Natural and Flat top Sampling, Reconstruction of signal from its samples, effect of under sampling –Aliasing, Introduction to Band Pass sampling, Relatedproblems.

UNIT-V:

LAPLACE TRANSFORMS: Introduction, Concept of region of convergence (ROC) forLaplace transforms, constraints on ROC for various classes of signals, Properties of L.T's,Inverse Laplace transform, Relation betweenL.T's, and F.T. of a signal. Laplace transformofcertain signals usingwaveform synthesis.

Z–TRANSFORMS: Concept of Z-Transform of a discrete sequence. Region of convergence in Z-Transform, constraints on ROC for various classes of signals, Inverse Z-transform, properties of Z-transforms. Distinction between Laplace, Fourierand Z transforms.

TEXTBOOKS:

- 1. Signals, Systems&Communications-B.P.Lathi, BS Publications, 2003.
- 2. Signals and Systems-A.V. Oppenheim, A.S. Willsky and S.H. Nawab, PHI, 2ndEdn, 1997
- 3. Signals & Systems-Simon Haykinand Van Veen, Wiley, 2ndEdition, 2007

REFERENCEBOOKS:

- 1. Principles of Linear Systems and Signals-BPL athi, Oxford University Press, 2015
- 2. SignalsandSystems-TK Rawat,Oxford University press,2011

CourseOutcomes: At the end of this course the student will able to:

- Differentiate the various classifications of signals and systems
- Analyze the frequency domain representation of signals using Fourier concepts
- Classify the systems based on their properties and determine the response of LTIS ystems.
- Know the sampling process and various types of sampling techniques.
- Apply Laplace and z-transforms to analyze signals and Systems (continuous&discrete).

		L	Т	Р	С		
II Year-I Semester		3	1	0	3		
RANDOM VARIABLES AND STOCHASTIC PROCESSES							

Course Objectives:

- To give students an introduction to elementary probability theory, in preparation to learn the concepts of statistical analysis, random variables and stochastic processes.
- To mathematically model therand omphenomena with the help of probability theory Concepts.
- To introduce the important concepts of random variables and stochastic processes.
- To analyze the LTI systems with stationary random process as input.

UNIT I

THE RANDOM VARIABLE: Introduction, Review of Probability Theory, Definition of a Random Variable, Conditions for a Function to be a Random Variable, Discrete, Continuous andMixed Random Variables, Distribution and Density functions, Properties, Binomial, Poisson, Uniform, Gaussian, Exponential, Rayleigh, Conditional Distribution, Conditional Density, Properties.

UNIT II

OPERATIONONONERANDOMVARIABLE-EXPECTATIONS: Introduction,

Expected Value of a Random Variable, Function of a Random Variable, Moments about theOrigin, Central Moments, Variance and Skew, Chebychev's Inequality, Characteristic Function,MomentGeneratingFunction,TransformationsofaRandomVariable:MonotonicTransf ormationsforaContinuousRandomVariable,Non-

 $monotonic Transformations of Continuous Random\ Variable.$

UNIT III

MULTIPLERANDOMVARIABLES: Vector Random Variables, Joint Distribution Function, Properties of Joint Distribution, Marginal Distribution Functions, Conditional Distribution and Density, Statistical Independence, Sum of Two Random Variables, Sum of Several Random Variables, Central Limit Theorem: Unequal Distribution,Equal Distributions.

OPERATIONS ON MULTIPLE RANDOM VARIABLES: Joint Moments about the Origin, Joint Central Moments, Joint Characteristic Functions, Jointly Gaussian Random Variables: TwoRandom Variables case, N Random Variables case, Properties, Transformations of Multiple RandomVariables, Linear Transformations of Gaussian Random Variables.

UNITIV

RANDOM PROCESSES – TEMPORAL CHARACTERISTICS: The Random Process Concept, Classification of Processes, Deterministic and Non deterministic Processes, Distribution and Density Functions, Concept of Stationarity and Statistical Independence. First-Order

Stationary Processes, Second-orderand Wide-Sense Stationarity, Nth-orderandStrict- Sense Stationarity, Time Averages and Ergodicity, Autocorrelation Function and its Properties, Cross-Correlation Function and its Properties, Covariance Functions, Gaussian Random Processes, Poisson Random Process.

UNITV

RANDOM PROCESSES -SPECTRAL CHARACTERISTICS: The Power Density Spectrum: Properties, Relationship between Power Density Spectrum and Auto correlation Function, The Cross-Power Density Spectrum, Properties, Relationship between Cross-Power Density Spectrum and Cross-Correlation Function.

LINEAR SYSTEMS WITH RANDOM INPUTS: Random Signal Response of Linear Systems: System Response – Convolution, Mean and Mean-squared Value of System Response, Auto correlation Function of Response, Cross-Correlation Functions of Input and Output, Spectral Characteristics of System Response: Power Density Spectrum of Response, Cross-Power Density Spectra of Input and Output, Bandpass, Band-Limited and Narrow band Processes, Properties.

TEXTBOOKS:

- 1. Probability, Random Variables & Random SignalPrinciples, Peyton Z.Peebles, TMH, 4thEdition, 2001.
- 2. Probability, Random Variables and Stochastic Processes, Athanasios Papoulis and S.Unnikrisha, PHI,4th Edition, 2002.
- 3. Probability and Random Processes with Applications to Signal Processing, Henry Starkand John W.Woods, Pearson Education, 3rdEdition, 2001.

REFERANCE BOOKS:

- 1. Schaum's Outline of Probability, Random Variables, and Random Processes, 1997.
- 2. An Introduction to Random Signals and Communication Theory, B.P.Lathi, International Textbook, 1968.
- 3. Probability Theory and Random Processes, P. Ramesh Babu, McGrawHill,2015.

CourseOutcomes:

After completion of the course, the student will be able to

- Mathematically model ther and omphenomena and solve simple probabilistic problems.
- Identify different types of random variables and compute statistical averages of the serandom variables.
- Characterize the random processes in the time and frequency domains.
- Analyze the LTI systems with random inputs.

	L	Т	Р	С
II Year – I Semester	3	1	0	3
MATHEMATICS-III				

CourseObjectives:

- Tofamiliarize the techniques in partial differential equations
- Tofurnishthelearnerswithbasicconceptsandtechniquesat plustwoleveltoleadthemintoadvanced level byhandling various realworldapplications.

CourseOutcomes: Attheend of the course, the student will be able to

- Interpret the physical meaning of different operators such as gradient, curland divergence (L5)
- Estimate the work done against a field, circulation and fluxusing vector calculus (L5)
- Apply the Laplace transform for solving differential equations (L3)
- Find or compute the Fourier series of periodic signals (L3)
- Knowandbeable to apply integral expressions for the forwards and inverse Fourier transform to arrange of non-periodic wave forms (L3)
- Identify solution methods for partial differential equations that model physical processes (L3)

Unit–I: Vector calculus:

Vector Differentiation: Gradient –Directional derivative–Divergence–Curl–Scalar Potential. Vector Integration: Line integral–Workdone–Area–Surfaceandvolumeintegrals–Vector integral theorems: Greens, Stokes and Gauss Divergencetheorems (without proof).

Unit–II: Laplace Transforms:

Laplace transforms of standard functions – Shifting theorems – Transforms of derivatives and integrals – Unit step function – Dirac's delta function – Inverse Laplace transforms–Convolution theorem (with out proof).

Applications: Solving ordinary differential equations (initial value problems) using Laplace transforms.

Unit-III: Fourier series and Fourier Transforms:

Fourier Series: Introduction – Periodic functions – Fourier series of periodic function –Dirichlet's conditions – Even and odd functions – Change of interval – Half-range sineandcosine series.

FourierTransforms: Fourier integral theorem (without proof) –Fourier sine and cosine integrals –Sine and cosine transforms –Properties–inversetrans forms –Finite Fourier transforms.

(**10hrs**)

(10hrs)

(10hrs)

Unit–IV: PDE of first order:

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions – Solutions of first order linear (Lag range) equation and nonlinear (standardtypes) equations.

UNITV:SecondorderPDEand Applications:

Second order PDE: Solutions of line arpartial differential equations with constant o efficient –RHS term of the type e^{axby} , $\sin(ax \ \Box by)$, $\cos(ax \ \Box by)$, $x^m y^n$.

Applications of PDE: Method of separation of Variables–Solution of One dimensional Wave, Heat and two-dimensional Laplace equation.

TextBooks:

- **1.** B.S.Grewal, **Higher Engineering Mathematics**, 43rd Edition, Khanna Publishers.
- **2. B.V.Ramana**, Higher Engineering Mathematics, 2007 Edition, Tata Mc.Graw Hill Education.

ReferenceBooks:

- 1. **ErwinKreyszig**, Advanced Engineering Mathematics, 10thEdition, Wiley-India.
- 2. **Dean. G. Duffy,** Advanced Engineering Mathematics with MATLAB, 3rdEdition, CRC Press.
- 3. Peter O'Neil, Advanced Engineering Mathematics, Cengage.
- 4. Srimantha Pal, SCBhunia, Engineering Mathematics, Oxford University Press.

(8hrs)

(10hrs)

II Year - I Semester		L	Т	Р	С
		0	0	3	1.5
	OOPS THROUGH JAVA LAB				

Course Outcomes: At the end of the course, students will be able to

		Knowledge
		Level (K)#
CO1	Identify classes, objects, members of a class and the relationship amongthemneeded for aspecificproblem	K3
CO2	Implementprogramstodistinguishdifferentformsofinheritance	K4
CO3	Createpackagesandtoreusethem	K3
CO4	DevelopprogramsusingExceptionHandlingmechanism	K3
CO5	Developmultithreaded applicationusingsynchronizationconcept.	K6
CO6	DesignGUIbased applicationsusingSwings andAWT.	K6

Listofprogramstobeexecuted:

- 1. The Fibonacci sequence is defined by the following rule. The first 2 values in the sequence are 1, 1.Every subsequent value is the sum of the 2 values preceding it. Write a Java Program that uses bothrecursive and non-recursivefunctions print thenthvalue of the Fibonacci sequence.
- 2. Write a Java Program that prompts the user for an integer and then prints out all the prime numbers uptothat integer.
- 3. Writeajavaprogramtoimplement callbyvalue and call byreferencemechanisms.
- 4. WriteaJavaProgram thatchecks whether agivenstring is apalindromeornot.
- 5. WriteaJavaProgramtocheckthecompatibilityformultiplication,ifcompatiblemultiplytwomatricesand find its transpose.
- 6. WriteaJavaprogram to implement constructor overloading and method overloading.
- 7. WriteaJavaProgram thatillustrates howruntimepolymorphismis achieved.
- 8. WriteaJavaProgramthat illustratestheuseof superkeyword.
- 9. WriteaJavaProgramtocreateanddemonstrate packages.
- 10. Write a Java Program, using String Tokenizer class, which reads a line of integers and then displayseachinteger and the sumof all integers.
- 11. Write a Java Program that reads on file name form the user then displays information about whether the file exists, whether the file is readable/ writable, the type of file and the length of the file in bytesanddisplay the content of the using FileInputStream class.
- 12. WriteaJavaProgramthatdisplays thenumber of characters, lines and words in a text/textfile.
- 13. Write a Java Program to implement a Queue, using user defined Exception Handling (also make use ofthrow, throws).

- 14. Write a Java Program that creates 3 threads by extending Thread class. First thread displays "Good Morning" every 1 sec, the second thread displays "Hello" every 2 seconds and the third displays "Welcome" every 3 seconds. (Repeat thesamebyimplementingRunnable).
- 15. WriteaJavaProgram demonstrating the lifecycleofathread.
- 16. Writean Appletthat displays the contentofa file.
- 17. Write a Java Program that works as a simple calculator. Use a gridlay out to arrange buttons for the digits and for the +-*?% operations. Add atext field to display the result
- 18. Writea Java Program for handling mouse events, keyboard events.
- 19. Write a Java Program that allows user to draw lines, rectangles and ovals.
- 20. Write a Java Program that lets users create Piecharts. Design your own user interface (with Swings & AWT).

IIYear-I Semester		L	Т	Р	С
		0	0	3	1.5
	ELECTRONIC DEVICES AND CIRCUITS LA	AB			

Note: The students are required to perform the experiment to obtain the V-I characteristics and to determine the relevant parameters from the obtained graphs.

List of Experiments: (Minimum of Ten Experiments has to be performed)

- P-N Junction Diode Characteristics
 Part A: Germanium Diode (Forward bias& Reverse bias)
 Part B: Silicon Diode (Forward Bias only)
- 2. Zener Diode Characteristics
- Part A: V-I Characteristics
 Part B: Zener Diode as Voltage Regulator
- 4. Rectifiers (without and with c-filter)Part A: Half-wave RectifierPart B: Full-wave Rectifier
- BJT Characteristics (CE Configuration) PartA: Input Characteristics Part B: Output Characteristics
- FET Characteristics (CS Configuration) Part A: Drain Characteristics Part B: Transfer Characteristics
- 7. SCR Characteristics
- 8. UJT Characteristics
- 9. Transistor Biasing
- 10. CRO Operation and its Measurements
- 11. BJT-CE Amplifier
- 12. Emitter Follower-CC Amplifier
- 13. FET-CS Amplifier

ALAR INADA

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Equipmentrequired:

- 1. Regulated Power supplies
- 2. Analog/Digital Storage Oscillo scopes
- 3. Analog/Digital Function Generators
- 4. Digital Multi-meters
- 5. Decade Résistance Boxes/Rheostats
- 6. Decade Capacitance Boxes
- 7. Ammeters (Analogor Digital)
- 8. Voltmeters (Analogor Digital)
- 9. Active & Passive Electronic Components

II Year-I Semester		L	Т	Р	С		
		0	0	3	1.5		

SWITCHING THEORY AND LOGIC DESIGN LAB

List of Experiments: (Minimum of Twelve Experiments has to be performed)

- 1. Verification of truth tables of Logic gates
 - Two input (i) OR (ii) AND (iii) NOR (iv) NAND (v) Exclusive OR (vi) Exclusive NOR
- 2. Design a simple combinational circuit with four variables and obtain minimal SOP expression and verify the truth table using Digital Trainer Kit
- 3. Verification of functional table of 3 to 8 line Decoder/De-multiplexer
- 4. 4 variable logic function verification using 8 to1 multiplexer.
- 5. Design full adder circuit and verify its functional table.
- 6. Verification of functional tables of
 - (i) JK Edge triggered Flip-Flop (ii) JK Master Slav Flip-Flop (iii) DFlip-Flop
- 7. Design a four bit ring counter using D Flip–Flops/JK Flip Flop and verify output
- 8. Design a four bit Johnson's counter using D Flip-Flops/JK Flip Flops and verify output
- 9. Verify the operation of 4-bit Universal Shift Register for different Modes of operation.
- 10. Draw the circuit diagram of MOD-8 ripple counter and construct a circuit using T- Flip-Flops and Test it with a low frequency clock and Sketch the output wave forms.
- 11. Design MOD–8 synchronous counter using T Flip- Flop and verify the result and Sketch the output wave forms.
- 12. (a) Draw the circuit diagram of a single bit comparator and test the output(b) Construct 7 Segment Display Circuit Using Decoder and 7 Segment LED and test it.

ADDon Experiments:

- 1. Design BCD Adder Circuit and Test the Same using Relevant IC
- 2. Design Excess-3 to 9-Complement convertor using only four Full Adders and test the Circuit.
- 3. Design an Experimental model to demonstrate the operation of 74154 De-Multiplexer using LEDs for outputs.

II Year - I Semester		L	Т	Р	С		
		0	0	4	2		
PYTHON LAB (SKILL ORIENTED COURSE)							

COURSE OUTCOMES:

At the end of the course the student shall be able to

CO1: Know comprehensions, generators in python.CO2: Know exception handling inpython CO3: Know file I/O

CO4: Understand various data types like lists, tuples, strings etc

CO5: Know the usage of various pre-defined functions on the above data types

PROGRAMMES:

1. a. Write a program to get the list of even numbers upto a given number.

b. Write a program to get the ASCII distance between two characters.

c. Write a program to get the binary form of a given number.

d. Write a program to convert base 36 to octal.

2. a. Write a program to get the number of vowels in the input string (No control flow allowed)

b. Write a program to check whether a given number has even number of 1's in its binary representation (No control flow, thenumbercanbein any base)

c. Write a program to sort given list of strings in the order of their vowel counts.

3. a. Write a program to return the top 'n' most frequently occurring chars and their respective counts. E.g. aaaaaabbbbcccc, 2 should return [(a5) (b 4)]b. Write a program to convert a given number into a given base.

Note: Convert the given number into a string in the given base. Valid base is 2<=base <=36 Raise exceptions similar to how int ("XX", YY) does (play in the console to find what errors it raises). Handle negative numbers just like binand oct do.

4. a. Write a program to convert a given iterable into a list. (Using iterator)

b. Write a program to implement user defined map() function.

Note: This function implements a map. It goes through the iterable and applies funcon each of the elements and returns a list of results.

Don't use a for loop or the built-in map function. Use exceptions, while loop and iter.

c. Write a program to generate an infinite number of even numbers (Use generator)

d. Write a program to get a list of even numbers from a given list of numbers. (use only comprehensions)

5. Write a program to implement round robin. Note: This routine to take a variable number of sequences and return elements from them in round robin till each sequence is exhausted. I fone of the input sequences is infinite, this is also infinite.

e.g if input is [1,2,3], (4,5) -> yield 1,4,2,5,3 one after the other. Use exception control

and comprehensions to write elegant code.

Hint: This requires you to use understand variable arguments, lists, listcopy, comprehensions, iterators, generators, exception handling, control flow etc.

6. a. Write a program to sort words in a file and put them in another file. The output file

shouldhave only lower case words, so any upper case words from source must be lowered.

(Handle exceptions)

b. Write a program return a list in which the duplicates are removed and the items are sorted from a given input list of strings.

7. a. Write a program to test whether given strings are anagrams are not.

b. Write a program to implement left binary search.

Note: Left binary search returns the left mostel ement when a search key repeats.

Fore.gif inputis [1,2,3,3,4,4,5] and I search 3, it should return 2 as index 2 is the left most occurrence of 3.

8. a. writea class Person with attributes name, age, weight (kgs), height (ft) and takes them through the constructor and exposes a method get_bmi_result() which returns one of "underweight", "healthy", "obese"

b. Write a program to convert the passed in positive integer number into its prime factorization form.

Note: If number = $a1 \wedge p1 * a2 \wedge p2 \dots$ where a1, a2 are primes and p1, p2 are powers >=1 then were present that using lists and tuples in pythonas [(a1,p1),(a2,p2), ...]

e.g.[(2,1),(5,1)] is the correct prime factorization of 10

Text book:

1. Mark Lutz & David Ascher, "Learning Python", Oreilly Publications, 5th edition

Web reference:

1. docs.python.com

II Year - II Semester		L	Т	Р	С
		3	1	0	3
	ELECTRONIC CIRCUIT ANALYSIS				

Course Objectives:

The main objectives of this course are:

- To learn hybrid-piparameters a thigh frequency and compare with low frequency parameters.
- Learn and understand the purpose of cascading of single stage amplifiers and derive the overall voltage gain.
- Analyze the effect of negative feedback on amplifier characteristics and derive the characteristics.
- Learn and understand the basic principle of oscillator circuits and perform the analysis of different oscillator circuits.
- Compare and analyze different Power amplifiers like Class A, Class B, Class C, Class AB and other types of amplifiers.
- Analyze different types of tuned amplifier circuits.

UNIT-I Small Signal High Frequency Transistor Amplifier models:

BJT: Transistor at high frequencies, Hybrid- π common emitter transistor model, Hybrid π conductance, Hybrid π capacitances, validity of hybrid π model, determination of high-frequency parameters in terms of low-frequency parameters, CE short circuit current gain, current gain with resistive load, cut-off frequencies, frequency response and gain bandwidthproduct.

FET: Analysis of common Source and common drain Amplifier circuits at high frequencies.

UNIT-II

Multistage Amplifiers: Classification of amplifiers, methods of coupling, cascaded transistor amplifier and its analysis, analysis of two stage RC coupled amplifier, high inputresistance transistor amplifier circuits and their analysis-Darlington pair amplifier, Cascode amplifier, Boot-strap emitter follower, Differential amplifier using BJT.

UNIT-III

Feedback Amplifiers: Feedback principle and concept, types of feedback, classification of amplifiers, feedback topologies, Characteristics of negative feedback amplifiers, Generalized analysis of feedback amplifiers, Performance comparison of feedback amplifiers, Method of analysis of feedback amplifiers.

Unit-IV

Oscillators: Oscillator principle, condition for oscillations, types of oscillators, RC-phaseshiftandWienbridgeoscillatorswithBJTandFETandtheiranalysis,Generalized analysis of LC Oscillators, Hartley and Colpitt's oscillators using BJT, Frequency and amplitude stability of oscillators.

UNIT-V

Power Amplifiers: Classification of amplifiers(A to H), Class A power Amplifiers, Class B Push-pull amplifiers, Complementary symmetry push pull amplifier, Class ABpoweramplifier, Class-Cpoweramplifier, Thermal stability and Heat sinks.

Tuned Amplifiers: Introduction, Q-Factor, small signal tuned amplifier, capacitancesingletuned amplifier, doubletuned amplifiers, , staggeredtunedamplifiers

TextBooks:

- 1. Integrated Electronics- J.Millman and C.C.Halkias, Tata McGraw-Hill, 1972.
- 2. Electronic Devices and CircuitsTheory –Robert L.Boylestad and Louis Nashelsky, Pearson/PrenticeHall, TenthEdition, 2009.
- Electronic Devices and Integrated Circuits B.P. Singh, Rekha, Pearson publications, 2006

References:

- 1. Electronic Circuit Analysis and Design Donald A.Neaman, McGrawHill, 2010.
- 2. Micro electronic Circuits-Sedra A.S. and K.C. Smith, Oxford University Press, Sixth Edition, 2011.
- 3. Electronic Circuit Analysis-B.V.Rao, K.R.Rajeswari, P.C.R.Pantulu, K.B.R.Murthy, PearsonPublications.

Course Outcomes:

At the end of this course the student can able to

- Design and analysis of small signal high frequency transistor amplifier using BJT and FET.
- Design and analysis of multistage amplifiers using BJT and FET and Differential amplifier using BJT.
- Derive the expressions for frequency of oscillation and condition for oscillation of RC and LC oscillators and their amplitude and frequency stability concept.
- Know the classification of the power and tuned amplifiers and their analysis with performance comparison

II Year – II Semester		L	Т	P	С
		3	1	0	3
	DIGITAL IC DESIGN				

OBJECTIVES

The main objectives of this course are:

- Introduction of digital logic families and inter facing concepts for digital design is considered.
- VHDL fundamentals were discussed to modeling the digital system design blocks.
- Design and implementation of combinational and sequential digital logic circuits is explained.

Outcomes:

At the end of this course the student can able to:

- Understand the structure of commercially available digital integrated circuit families.
- Learn the IEEE Standard 1076 Hardware Description Language (VHDL).
- Model complex digital systems at several levels of abstractions, behavioral, structural, and rapid system prototyping.
- Analyze and design basic digital circuits with combinatorial and sequential logic circuits using VHDL.

UNIT-I

Hardware Description Languages.

VHDL: Introduction to VHDL, entity declaration, architecture, data-flow, behavioral and structural style ofmodelings,datatypes,dataobjects,configurationdeclaration,package,generic,operatorsandidentifiers,PROCE SS,IF, CASE & LOOPstatements, VHDL libraries.

Verilog HDL: Introduction to Verilog HDL, data types, data operators, module statement, wire statement, ifelsestatement, case-endcasestatement, Verilog syntax and semantics(qualitative approach)

UNIT-II

Combinational Logic Design: Parallel binary adder, carry look ahead adder, BCD adder, Multiplexers and demultiplexers and their use in combinational logic design, ALU, digital comparators, parity generators, codeconverters, priority encoders. (Qualitative approach of designing and modeling the mentioned combinationallogiccircuits with relevant digital ICs using HDL)

UNIT-III

Sequential Logic Design: Registers, applications of shift registers, ripple or a synchronous counters, synchronous and a synchronous sequential circuits, hazards in sequential circuits. (Qualitative approach of designing and modeling the mentioned sequential logic circuits with relevant digital ICs using HDL)

UNIT-IV

Combinational MOS Logic Circuits: Introduction, MOS logic circuits with depletion nMOS loads: twoinputNOR gate, generalized NOR structure with multiple inputs, transient analysis of NOR gate, two-input NANDgate, generalized NAND structure with multiple inputs, transient analysis of NAND gate, CMOS logic circuits:CMOS NOR2 gate, CMOS NAND2 gate,complex logic circuits, complex CMOS logic gates, AOI and OAIgates, Pseudo-nMOS gates, CMOS full-adder circuit,CMOS transmission gates (Pass Gates), complementarypass-transistorlogic.

UNIT-V

Sequential MOS Logic Circuits: Introduction, behavior bistable elements, SR latch circuit, clocked latch andflip-flop circuits: clocked SR latch, clocked JK latch, master-slave flip-flop, CMOS D-latch and Edge-triggeredflip-flop,Schmitt trigger circuit, basic principlesof pass transistor circuits.

TEXTBOOKS

- Modern Digital Electronics–R.P.Jain-Fourth Edition–Tata McGraw Hill Education Private Limited, 2010.
- CMOS Digital Integrated Circuits-Analysis and Design–Sung-MoKang & Yusuf Leblebici-Tata McGraw Hill Publishing Company Limited, 2006.
- 3. VHDL/VerilogPrimer J.Bhasker, Pearson Education/PHI, 3rd Edition.

REFERENCES

- Digital Design Principles & Practices-John F. Wakerly, PHI/Pearson Education Asia, 3rd Edition, 2005.
- Fundamentals of Digital Logic with VHDL Design Stephen Brown, Zvonko Vranesic, McGraw Hill, 3rd Edition.

II Year-II Semester		L	Т	Р	С
II Year-II Semester		3	0	0	3
	ANALOG COMMUNICATIONS				

Course Objectives:

Students undergoing this course are expected to

- Familiarize with the fundamentals of analog communication systems.
- Familiarize with various techniques for analog modulation and demodulation of signals.
- Distinguish the figure of merits of various analog modulation methods.
- Develop the ability to classify and understand various functional blocks of radio transmitters and receivers.
- Familiarize with basic techniques for generating and demodulating various pulse modulated signals.

UNIT I

AMPLITUDE MODULATION : Introduction to communication system, Need for modulation, Frequency Division Multiplexing , Amplitude Modulation, Definition, Time domain and frequencydomain description, single tone modulation, power relations in AM waves, Generation of AMwaves, square law Modulator, Switching modulator, Detection of AM Waves; Square law detector, Enveloped etector.

UNIT II

DSB & SSB MODULATION: Double side band suppressed carrier modulators, time domain and frequency domain description, Generation of DSBSC Waves, Balanced Modulators, Ring Modulator, Coherent detection of DSB-SC Modulated waves, COSTAS Loop. Frequency domaindescription, Frequency discrimination method for generation of AM SSB Modulated Wave, Time domain description, Phase discrimination method for generating AMSSB Modulated waves. Demodulation of SSB Waves, Vestigial side band modulation: Frequency description, Generation of VSB Modulated wave, Time domain description, Envelope detection of a VSB Wave pulse Carrier, Comparison of AM Techniques, Applications of different AM Systems, FDM.

UNIT III

ANGLE MODULATION: Basicconcepts, Frequency Modulation: Single tone frequency modulation, Spectrum Analysis of Sinusoidal FM Wave, Narrowband FM, Wideband FM, Constant Average Power, Transmission bandwidth of FM Wave- Generation of FM Waves, Detection of FM Waves: Balanced Frequency discriminator, Zero crossing detector, Phase lockedloop. Comparison of FM & AM.

UNIT IV

TRANSMITTERS & RECEIVERS: Radio Transmitter - Classification of Transmitter, AM Transmitter, Effect of feedback on performance of AM Transmitter, FM Transmitter –Variable reactance type and phase modulated FM Transmitter, frequency stability in FM Transmitter. **Radio Receiver** - Receiver Types - Tuned radio frequency receiver, Super heterodyne receiver, RF section and Characteristics - Frequency changingand tracking, Intermediate frequency, AGC, FM Receiver, Comparison with AM Receiver, Amplitude limiting. Communication Receivers, extensions of super heterodyne principle and additional circuits.

UNITV

NOISE: Review of noise and noise sources, noise figure, Noise in Analog communication Systems, Noise in DSB & SSB System, Noise in AM System, Noise in Angle Modulation Systems, Threshold effect in Angle Modulation System, Pre-emphasis & de-emphasis **PULSE MODULATION:** Types of Pulse modulation, PAM (Single polarity, double polarity) PWM: Generation & demodulation of PWM, PPM, Generation and demodulation of PPM, Time Division Multiplexing, TDM Vs FDM

TEXTBOOKS:

- 1. Principles of Communication Systems–HTaub&D.Schilling, GautamSahe, TMH, 3rd Edition, 2007.
- 2. Principles of Communication Systems-Simon Haykin, John Wiley, 2nd Edition, 2007.
- 3. Modern Digital and Analog Communication Systems –B.P.Lathi, Zhi Ding, Hari Mohan Gupta, Oxford University Press, 4th Edition, 2017

REFERENCES:

- 1. Electronics & Communication System– George Kennedyand Bernard Davis, TMH 2004.
- 2. Communication Systems-R.P.Singh, SP Sapre, Second Edition TMH, 2007.
- 3. Electronic Communication systems–Tomasi, Pearson, fourth Edition, 2007.

Course Outcomes:

After undergoing the course, students will be able to

- Differentiate various Analog modulation and demodulation schemes and their spectral characteristics
- Analyze noise characteristics of various analog modulation methods
- Analyze various functional blocks of radiotransmitters and receivers
- Design simple analog systems for various modulation techniques

II Year-II Semester		L	Т	Р	С
II Tear-II Semester		3	1	0	3
	LINEAR CONTROL SYSTEMS				

Course objectives:

- To introduce the concepts of open loop and closed loop systems, mathematical models of mechanical and electrical systems, and concepts of feedback
- To study the characteristics of the given system in terms of the transfer function and introducing various approaches to reduce the overall system for necessary analysis
- To develop the acquaintance in analyzing the system response in time-do main and frequency domain in terms of various performance indices
- Toanalyzethesystem in terms of absolute stability and relative stability by different approaches
- To design different control systems for different applications as per given specifications
- To introduce the concepts of state variable analysis, design and also the concepts of controllability and observability.

UNIT I - INTRODUCTION

Concepts of System, Control Systems: Open Loop and closed loop control systems and their differences. Different examples of control systems, Feed-Back Characteristics, Effects of feedback. Mathematical models, Differential equations, Impulse Response and transfer functions. Translational and Rotational mechanical systems

UNIT II – TRANSFER FUNCTION REPRESENTATION

Transfer Function of DC Servo motor - AC Servo motor- Synchro-transmitter and Receiver, Block diagram representation of systems considering electrical systems as examples –Block diagram algebra–Representation by Signal flowgraph-Reduction using mason's gain formula.

TIME RESPONSE ANALYSIS

Standard test signals – Time response of first order systems – Characteristic Equation of Feedback controlsystems, Transient response of second order systems – Time domain specifications – Steady state response - Steady state errors and error constants.

UNIT III – STABILITY ANALYSIS IN S-DOMAIN

The concept of stability – Routh's stability criterion – qualitative stability and conditional stability – limitations of Routh's stability100

Root Locus Technique:

The root locus concept - construction of root loci-effects of adding poles and zeros to G(s) H(s) on the root loci.

UNIT IV

Frequency response analysis: Introduction, Correlation between time and frequency response, PolarPlots, BodePlots,Nyquist Stability Criterion

UNIT V – CLASSICAL CONTROL DESIGN TECHNIQUES

Compensation techniques – Lag, Lead, Lead-Lag Controllers design infrequency Domain, PIDControllers. State Space Analysis of Continuous Systems Concepts of state, state variables and state model, derivation of state models from block diagrams, Diagonalization-Solving the Timeinvariant state Equations- State Transition Matrix and it's Properties – Concepts of ControllabilityandObservability.

TEXT BOOKS:

- 1. Automatic Control Systems 8th edition- by B.C.Kuo Johnwiley and son's, 2003.
- Control Systems Engineering –by I. J.Nagrathand M.Gopal, New Age International (P) Limited, Publishers, 2nd edition, 2007
- 3. Modern Control Engineering-by Katsuhiko Ogata-Pearson Publications, 5th edition, 2015.

REFERENCE BOOKS:

- 1. Control Systems by A.Nagoorkani, RB Apublications, 3 edition, 2017.
- 2. Control Systems by A.Anandkumar, PHI, 2 Edition, 2014.

Course Outcomes:

- This course introduces the concepts of feedback and its advantages to various control systems
- The performance metrics to design the control system intime-domain and frequency domain are introduced.
- Control systems for various applications can be designed using time-domain and frequency domain analysis.
- In addition to the conventional approach, the state space approach for the analysis of control systems is also introduced.

II Year - II Semester		L	Т	Р	С
II Year - II Semester		3	0	0	3
MA	NAGEMENT AND ORGANISATIONAL BEHA	VIOUI	R		

Course Objectives:

- To familiarize with the process of management, principles, leadership styles and basic concepts on Organization.
- To provide conceptua l knowledge on functional management that ison Human resource management and Marketing management.
- To provide basic insight into select contemporary management practices and Strategic Management.
- To learn theories of motivation and alsodeals with individual behavior, their personality and perception of individuals.
- To understand about organizations groups that affect the climate of an entire organizations which helps employees instress management.

Unit - I

Introduction: Management and organizational concepts of management and organization-Nature and Importance of Management, Functions of Management, System approach to Management- Taylor's Scientific Management Theory, Fayol's Principles of Management, Leadership Styles, Social responsibilities of Management. Designing Organizational Structures: Basic concepts related to Organization - Departmentation and Decentralization, MBO, Processandconcepts.

Unit - II

Functional Management: Human Resource Management (HRM) Concepts of HRM, Basic functions of HR Manager: Manpower planning, Recruitment, Selection, Training and Development, Wage and Salary Administration Performance Appraisal, Grievance Handling and Welfare Administration, Job Evaluation and Merit Rating.- Marketing Management: Concepts of Marketing, Marketing mix elements and marketing strategies.

Unit - III

Strategic Management: Strategic Management and Contemporary Strategic Issues: Mission, Goals, Objectives, Policy, Strategy, Programmes, Elements of Corporate Planning Process, Environmental Scanning, Value Chain Analysis, SWOT Analysis, Steps in Strategy Formulation and implementation, Generic Strategy alternatives. Bench Marking and Balanced Score Card as Contemporary Business Strategies.

Unit - IV

Individual Behavior: Perception – Perceptual process – Impression management – Personality development – Socialization – Attitude – Process – Formation – Positive attitude – Change – Learning – Learning organizations – Reinforcement Motivation – Process – Motives – Theories of Motivation: Maslow's Theory of Human Needs, Douglas McGregor's Theory X and Theory Y, Herzberg's Two-Factor Theory of Motivation

Unit - V

Group Dynamics: Types of Groups, Stagesof Group Development, Group Behaviour and Group Performance Factors, Organizational conflicts: Reasons for Conflicts, Consequences of Conflictsin Organization, Types of Conflicts, Strategies for Managing Conflicts, Organizational ClimateandCulture, Stress, Causesand effects, copingstrategies of stress.

ReferenceBooks:

- 1. Subba Rao P., Organizational Behaviour, Himalaya Publishing House, Mumbai.
- 2. Fred Luthans Organizational Behaviour, TMH, NewDelhi.
- 3. Robins, Stephen P., Fundamentals of Management, Pearson, India.
- 4. Kotler Philip & Keller Kevin Lane: Marketing Mangement 12/e, PHI, 2007
- 5. Koontz & Weihrich: Essentials of Management, 6/e, TMH, 2007
- 6. Kanishka Bedi, Production and Operations Management, Oxford University Press, 2007.

Course Outcomes:

- After completion of the Course the student will acquire the knowledge on management functions, global leadership and organizational structure.
- Will familiarize with the concepts of functional management that is HR Mand Marketing of new product developments.
- The learnerisable to think in strategically through contemporary management practices.
- The learner can develop positive attitude through personality development and can equip with motivational theories.
- The student can attain the group performance and grievance handling in managing the organizational culture.

II Voon II Comoston		L	Т	Р	С
II Year – II Semester		0	0	3	1.5
	ELECTRONIC CIRCUIT ANALYSIS LAB				

Note: The students are required to design the circuit and perform the simulation using Multisim/ Equivalent Industrial Standard Licensed simulation software tool. Further they are required to verify the result using necessary hardware equipment.

List of Experiments: (Minimum of Ten Experiments has to be performed)

- 1. Determination of fTofa given transistor.
- 2. Voltage-Series Feedback Amplifier
- 3. Current-Shunt Feedback Amplifier
- 4. RC Phase Shift/Wien Bridge Oscillator
- 5. Hartley/Colpitt's Oscillator
- 6. Two Stage RC Coupled Amplifier
- 7. Darlington Pair Amplifier
- 8. Boots trapped Emitter Follower
- 9. Class A Series-fed Power Amplifier
- 10. Transformer-coupled Class A Power Amplifier
- 11. Class B Push-Pull Power Amplifier
- 12. Complementary Symmetry Class B Push-Pull Power Amplifier
- 13. Single Tuned Voltage Amplifier
- 14. Double Tuned Voltage Amplifier

Equipment required: Software:

- i. Multisim/Equivalent Industrial Standard Licensed simulation software tool.
- ii. Computer Systems with required specifications

HardwareRequired:

- 1. Regulated Power supplies
- 2. Analog/Digital Storage Oscillo scopes
- 3. Analog/Digital Function Generators
- 4. Digital Multimeters
- 5. Decade Résistance Boxes/Rheostats
- 6. Decade Capacitance Boxes
- 7. Ammeters (Analog or Digital)
- 8. Voltmeters (Analog or Digital)
- 9. Active & Passive Electronic Components

II Year-II Semester		L	Т	Р	С
II Tear-II Semester		0	0	3	1.5
	ANALOG COMMUNICATIONS LAB				

List of Experiments:

(Twelve experiments to be done- The students have to calculate the relevant parameters) -

(a. Hardware, b. MATLAB Simulink, c. MATLAB Communication tool box)

- A. Amplitude Modulation Modulation & Demodulation
- B. AM DSBSC Modulation & Demodulation
- C. Spectrum Analysis of Modulated signal using Spectrum Analyzer
- D. Diode Detector
- E. Pre-emphasis & De-emphasis
- F. Frequency Modulation–Modulation & Demodulation
- G. AGC Circuits
- H. Verification of Sampling Theorem
- I. Pulse Amplitude Modulation & Demodulation
- J. PWM, PPM–Modulation & Demodulation
- K. PLLIC-565 as FM demodulator
- L. Radio receiver characteristics
- M. Radio Receiver/TV Receiver Demokits or Trainees.

Note: All the above experiments are to be executed/completed using hardware boards and also to be simulated on Mat lab.

Equipment& Software required: Software:

- i) Computer Systems with latest specifications
- ii) Connected in LAN (Optional)
- iii) Operating system (Windows/Linuxsoftware)
- iv) Simulations software (Simulink & MATLAB)

Equipment:

1.	RPS	-	0-30V
2.	CRO	-	0–20M Hz.
3.	Function Generators	-	0 - 1 MHz
4.	Components and Bread b	oards	

- 5. Multimeters and other meters
- 6. Spectrum Analyzer

II Year – II Semester		L	Т	Р	С
II 1 ear – II Semester		0	0	3	1.5
	DIGITAL IC DESIGN LAB				

Note: The students are required to design and draw the internal logical structure of the following Digital Integrated Circuits and to develop VHDL/Verilog HDL Source code, perform simulation using relevant simulator and analyze the obtained simulation results using necessary synthesizer. All the experiments are required to verify and implement the logical operations on the latest FPGA Hardware in the Laboratory.

List of Experiments: (Minimum of Ten Experiments has to be performed)

- 1. Realization of Logic Gates
- 2. Design of Full Adderusing 3 modeling systems
- 3. 3 to 8 Decoder-74138
- 4. 8 to 3 Encoder (with and without parity)
- 5. 8x1Multiplexer-74151 and 2x4De-multiplexer-74155
- 6. 4-Bit comparator-7485
- 7. D Flip-Flop-7474
- 8. Decade counter -7490
- 9. Shift registers-7495
- 10. 8-bit serialin-parallel out and parallel in-serial out
- 11. Fast In & Fast Out (FIFO)
- 12. MAC (Multiplier & Accumulator)
- 13. ALU Design.

II Voon II Somoston		L	Т	Р	С
11 Year – 11 Semester	II Year – II Semester SOFT SKILLS (SKILL ORIENTED COU	0	0	4	2
SOI	T SKILLS (SKILL ORIENTED COUF	RSE)			

Course Outcomes:

At the end of the Course, the Student will be able to:

CO1 Use language fluently, accurately and appropriately indebates and group discussions CO2 Use their skills of listening comprehension to communicate effectively incross-cultural contexts.

CO3 Learn and use new vocabulary.

CO 4 Write resumes, project reports and reviews.

CO5 Exhibit interview skills and develop soft skills.

- 1. Group Discussion–dynamics of group discussion, Lateral thinking, Brain storming.
- 2. Interview Skills- concept and process, pre-interview planning, opening strategies, answering strategies, interview through teleand video-conferencing.
- 3. Meetings-making meeting effective, chairing a meeting, decision-making, seeking opinions, interrupting and handling interruptions, clarifications, closure, Negotiation skills.
- 4. Listening comprehension Achieving ability to comprehend material delivered at relatively fastspeed; comprehending spoken material in Standard Indian English, British English, and American English.
- 5. Cross-Cultural Communication / Non-Verbal Communication, Problems of Language, Lack of Language equivalency/ difficulties in using English.
- 6. Vocabulary building, Creativity in using Advertisements, Case Studies etc.
- 7. Personality Development: Decision-Making, Problem Solving, Goal Setting, Time Management & Positive Thinking.
- 8. Resume writing –structure and presentation, planning, defining the career objective.
- 9. Writing Skills–Letter writing, Email etiquette; Essays for competitive examinations, Analyzing news paper articles.
- 10. Technical Report Writing/Project Proposals-Types of format sand styles, subject matterorganization, clarity,
- 11. Coherence and style, planning, data-collection, tools, analysis- Progress and Project Reports.

REFERENCES:

- 1. M.Ashraf Rizvi, "Effective Technical Communication", Tata McGraw-Hill Publishing Company Ltd. 2005.
- 2. Andrea J.Rutherford, "Basic Communication Skills for Technology", 2nd Edition, Pearson Education, 2007.
- 3. Meenakshi Raman & Sangeeta Sharma, "Technical Communication", Oxford University Press, 2011.
- 4. DELTA 'skey to the Next Generation TOEFL Test: "Advanced Skill Practice," New Age

COURSE STRUCTURE AND SYLLABUS

For

B. TECH ELECTRONICS AND COMMUNICATION ENGINEERING

(Applicable for batches admitted from 2019-2020)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA - 533 003, Andhra Pradesh, India

I Year – I SEMESTER

Sl.	Course	Subjects	L	Т	Р	Credits
No	Code					
1	HS1101	English	3	0	0	3
2	BS1101	Mathematics - I	3	0	0	3
3	BS1106	Applied Chemistry	3	0	0	3
4	ES1101	Programming for Problem Solving Using C	3	0	0	3
5	ES1103	Engineering Drawing	1	0	3	2.5
6	HS1102	English Lab	0	0	3	1.5
7	BS1107	Applied Chemistry Lab	0	0	3	1.5
8	ES1102	Programming for Problem Solving Using C Lab	0	0	3	1.5
9	MC1101	Environmental Science	3	0	0	0
	Total Credits		16	0	12	19

I Year – IISEMESTER

Sl.	Course	Subjects	L	Т	Р	Credits
No	Code					
1	BS1202	Mathematics – II	3	0	0	3
2	BS1203	Mathematics – III	3	0	0	3
3	BS1204	Applied Physics	3	0	0	3
4	ES1209	Network Analysis	3	0	0	3
5	ES1211	Basic Electrical Engineering	3	0	0	3
6	ES1215	Electronic workshop	0	0	2	1
7	ES1208	Basic Electrical Engineering Lab	0	0	3	1.5
8	BS1205	Applied Physics Lab	0	0	3	1.5
9	HS1203	Communication Skills Lab	0	0	2	1
10	PR1201	Engineering Exploration Project	0	0	2	1
			15	0	12	21

II Year – ISemester

S. No.	Course	Category	L	Т	Р	Credits
1	Electronic Devices and Circuits	PC	3	0	0	3
2	Switching Theory and Logic Design	PC	3	0	0	3
3	Signals and Systems	PC	3	0	0	3
4	Random Variables and Stochastic Processes	PC	3	0	0	3
5	Object Oriented Programming through Java	ES	3	0	0	3
6	Managerial Economics & Financial Analysis	HS	3	0	0	3
7	Electronic Devices and Circuits - Lab	LC	0	0	3	1.5
8	Switching Theory and Logic Design - Lab	LC	0	0	3	1.5
9	Constitution of India	MC	3	0	0	0
			Su	b-To	tal	21

II Year – IISemester

S. No.	Course	Category	L	Т	Р	Credits
1	Electronic Circuit Analysis	PC	3	0	0	3
2	Linear Control Systems	PC	3	0	0	3
3	Electromagnetic Waves and Transmission Lines	PC	3	0	0	3
4	Analog Communications	PC	3	0	0	3
5	Computer Architecture and Organization	ES	3	0	0	3
6	Management and Organizational Behavior	HS	3	0	0	3
7	Electronic Circuit Analysis - Lab	LC	0	0	3	1.5
8	Analog Communications - Lab	LC	0	0	3	1.5
			Sub-Total		21	

III Year – I Semester

S. No.	Course	Category	L	Т	Р	Credits
1	Linear Integrated Circuits and Applications	PC	3	0	0	3
2	Microprocessor and Microcontrollers	PC	3	0	0	3
3	Digital Communications	PC	3	0	0	3
4	Electronic Measurements & Instrumentation	PC	3	0	0	3
5	Professional Elective (PE 1)	PE	3	0	0	3
6	Linear Integrated Circuits and Applications - Lab	LC	0	0	3	1.5
7	Digital Communications Lab	LC	0	0	3	1.5
8	Microprocessor and Microcontrollers - Lab	LC	0	0	3	1.5
9	Mini Project with Hardware Development	PR	0	0	3	1.5
10	Essence of Indian Traditional Knowledge	MC	3	0	0	0
			Sub-Total			21

III Year – IISemester

S. No.	Course	Category	L	Τ	Р	Credits
1	Wired and Wireless Transmission Devices	PC	3	0	0	3
2	VLSI Design	PC	3	0	0	3
3	Digital Signal Processing	PC	3	0	0	3
4	Professional Elective (PE2)	PE	3	0	0	3
5	Open Elective (OE1)	OE	3	0	0	3
6	Internet of Things	PC	3	0	0	3
7	VLSI Lab	LC	0	0	3	1.5
8	Digital Signal Processing Lab	LC	0	0	3	1.5
9	Intellectual Property Rights (IPR) & Patents	MC	3	0	0	0
			Sub-Total			21

IV Year – ISemester

S. No.	Course	Category	L	Т	Р	Credits
1	Microwave and Optical Communication Engineering	PC	3	0	0	3
2	2 Data Communications & Computer networks		3	0	0	3
3			3	0	0	3
4	Professional Elective (PE3)	PE	3	0	0	3
5	Professional Elective (PE4)	PE	3	0	0	3
6	6 Internet of Things Lab		0	0	3	1.5
7	Microwave and Optical Communication Engineering LAB	LC	0	0	3	1.5
8	Project - Part I	PR	0	0	6	3
			Su	b-Tot	al	21

IV Year – II Semester

S. No.	Course	Category	L	Т	Р	Credits
1	Professional Elective (PE5)	PE	3	0	0	3
2	Open Elective (OE2)	OE	3	0	0	3
3	Project - Part II	PR	0	0	18	9
			Sub-Total		15	
			Total			160

PROFESSIONAL ELECTIVES 1:

- 1. Information Theory &Coding
- 2. Digital System Design usingHDL
- 3. Data structures and Algorithms
- 4. Soft computing techniques and Pythonprogramming
- 5. Simulation& MathematicalModeling

PROFESSIONAL ELECTIVES 2:

- 1. Cellular & Mobile Communication
- 2. Digital ICDesign
- 3. Business Intelligence & Analytics
- 4. PatternRecognition
- 5. Robotics and Automation

PROFESSIONAL ELECTIVES 3:

- 1. Communication Standards and Protocols
- 2. Analog ICDesign
- 3. SmartSensors
- 4. Advanced Digital SignalProcessing
- 5. AugmentedReality

PROFESSIONAL ELECTIVES 4:

- 1. SoftwareRadio
- 2. Low power VLSIDesign
- 3. EmbeddedSystems
- 4. DSP processors and Architectures
- 5. Multi MediaCommunication

PROFESSIONAL ELECTIVES 5:

- 1. WirelessCommunication
- 2. VLSI Testing & Testability
- 3. Machine Learning & ArtificialIntelligence
- 4. SpeechProcessing
- 5. Industrial Internet of Things

OPEN ELECTIVES FOR ECE:

Open Elective 1:

- 1. DataMining
- 2. PowerElectronics
- 3. MEMS and itsapplications
- 4. Artificial NeuralNetworks

Open Elective 2:

- 1. 3D Printing
- 2. Block chainTechnology
- 3. Cyber Security & Cryptography

OPEN ELECTIVES OFFERED BY ECE:

- OE 1 Principles of communication
- OE 2 Embedded Systems

I Year - I Semester		L	Т	Р	С
1 Year - 1 Semester		3	0	0	3
	ENGLISH				

Introduction

The course is designed to train students in receptive (listening and reading) as well as productive and interactive (speaking and writing) skills by incorporating a comprehensive, coherent and integrated approach that improves the learners' ability to effectively use English language in academic/ workplace contexts. The shift is from *learning about the language* to using the language. On successful completion of the compulsory English language course/s in appearing for international learners would be confident of B.Tech.. language qualification/proficiency tests such as IELTS, TOEFL, or BEC, besides being able to express themselves clearly in speech and competently handle the writing tasks and verbal ability component of campus placement tests. Activity based teaching-learning methods would be adopted to ensure that learners would engage in actual use of language both in the classroom and laboratorysessions.

CourseObjectives

- Facilitate effective listening skills for better comprehension of academic lectures and English spoken by nativespeakers
- Focus on appropriate reading strategies for comprehension of various academic texts and authenticmaterials
- Help improve speaking skills through participation in activities such as role plays, discussions and structured talks/oralpresentations
- Impart effective strategies for good writing and demonstrate the same in summarizing, writing well organized essays, record and report usefulinformation
- Provide knowledge of grammatical structures and vocabulary and encourage their appropriate use in speech and writing

Learning Outcomes

At the end of the module, the learners will be able to

- understand social or transactional dialogues spoken by native speakers of English and identify the context, topic, and pieces of specificinformation
- > ask and answer general questions on familiar topics and introduceoneself/others
- employ suitable strategies for skimming and scanning to get the general idea of a text and locate specificinformation
- recognize paragraph structure and be able to match beginnings/endings/headings with paragraphs
- ➢ form sentences using proper grammatical structures and correct wordforms

<u>Unit 1:</u>

Lesson-1: A Drawer full of happiness from "Infotech English", Maruthi Publications Lesson-2: Deliverance by Premchand from "The Individual Society", PearsonPublications. (Non-detailed)

Listening: Listening to short audio texts and identifying the topic. Listening to short audio texts and identifying the context and specific pieces of information to answer a series of questions both in speaking and writing.

Speaking: Asking and answering general questions on familiar topics such as home, family, work, studies and interests.Self introductions and introducing others.

Reading: Skimming text to get the main idea. Scanning to look for specific pieces of information.

Reading for Writing: Paragraph writing (specific topics) using suitable cohesive devices; linkers, sign posts and transition signals; mechanics of writing - punctuation, capitalletters.

Vocabulary: Technical vocabulary from across technical branches (20) GRE Vocabulary(20) (Antonyms and Synonyms, Word applications) Verbal reasoning and sequencing ofwords.

Grammar: Content words and function words; word forms: verbs, nouns, adjectives and adverbs; nouns: countables and uncountables; singular and plural basic sentence structures; simple question form - wh-questions; word order in sentences. **Pronunciation**: Vowels, Consonants, Plural markers and their realizations

<u>Unit 2:</u>

Lesson-1: Nehru's letter to his daughter Indira on her birthday from "**Infotech English**", Maruthi Publications

Lesson-2: Bosom Friend by Hira Bansode from "**The Individual Society**", Pearson Publications. (Non-detailed)

Listening: Answering a series of questions about main idea and supporting ideas after listening to audio texts, both in speaking and writing.

Speaking: Discussion in pairs/ small groups on specific topics followed by short structured talks. Functional English: Greetings and leave takings.

Reading: Identifying sequence of ideas; recognizing verbal techniques that help to link the ideas in a paragraph together.

Reading for Writing: Summarizing - identifying main idea/s and rephrasing what is read; avoiding redundancies and repetitions.

ALANDAR STREET

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary Analogies (20 words) (Antonyms and Synonyms, Word applications)

Grammar: Use of articles and zero article; prepositions.

Pronunciation: Past tense markers, word stress-di-syllabic words

<u>Unit 3:</u>

Lesson-1: Stephen Hawking-Positivity 'Benchmark' from "Infotech English", Maruthi Publications

Lesson-2: Shakespeare's Sister by Virginia Woolf from "The Individual Society", Pearson Publications. (Non-detailed)

Listening: Listening for global comprehension and summarizing what is listened to, both in speaking and writing.

Speaking: Discussing specific topics in pairs or small groups and reporting what is discussed. Functional English: Complaining and Apologizing.

Reading: Reading a text in detail by making basic inferences - recognizing and interpreting specific context clues; strategies to use text clues for comprehension. Critical reading.

Reading for Writing: Summarizing - identifying main idea/s and rephrasing what is read; avoiding redundancies and repetitions. Letter writing-types, format and principles of letter writing. E-mail etiquette, Writing CV's.

Vocabulary: Technical vocabulary from across technical branches (20 words). GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Association, sequencing of words

Grammar: Verbs - tenses; subject-verb agreement; direct and indirect speech, reporting verbs for academicpurposes.

Pronunciation: word stress-poly-syllabic words

<u>Unit 4:</u>

Lesson-1: Liking a Tree, Unbowed: Wangari Maathai-biography from "**Infotech English**", Maruthi Publications

Lesson-2: Telephone Conversation-Wole Soyinka from "The Individual Society", Pearson Publications. (Non-detailed)

Listening: Making predictions while listening to conversations/ transactional dialogues without video (only audio); listening to audio-visual texts.

Speaking: Role plays for practice of conversational English in academic contexts (formal and informal) - asking for and giving information/directions. Functional English: Permissions, Requesting, Inviting.

Reading: Studying the use of graphic elements in texts to convey information, reveal trends/patterns/relationships, communicative process or display complicated data.

Reading for Writing: Information transfer; describe, compare, contrast, identify significance/trends based on information provided in figures/charts/graphs/tables. Writing SOP, writing for media.

Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Cloze Encounters.

Grammar: Quantifying expressions - adjectives and adverbs; comparing and contrasting; degrees of comparison; use of antonyms

Pronunciation: Contrastive Stress

<u>Unit 5:</u>

Lesson-1: Stay Hungry-Stay foolish from "Infotech English", Maruthi Publications

Lesson-2: Still I Rise by Maya Angelou from "**The Individual Society**", Pearson Publications. (Non-detailed)

Listening: Identifying key terms, understanding concepts and interpreting the concepts both in speaking and writing.

Speaking: Formal oral presentations on topics from academic contexts - without the use of PPT slides. Functional English: Suggesting/Opinion giving.

Reading: Reading for comprehension. RAP Strategy Intensive reading and Extensive reading techniques.

Reading for Writing: Writing academic proposals- writing research articles: format and style.

Vocabulary: Technical vocabulary from across technical branches (20 words) GRE Vocabulary (20 words) (Antonyms and Synonyms, Word applications) Coherence, matching emotions.

Grammar: Editing short texts – identifying and correcting common errors in grammar and usage (articles, prepositions, tenses, subject verbagreement)

Pronunciation: Stress in compound words

Prescribed text books for theory for Semester-I:

- 1. "Infotech English", Maruthi Publications.(Detailed)
- 2. "The Individual Society", Pearson Publications.(Non-detailed)

Reference books:

1. Bailey, Stephen. Academic writing: A handbook for international students.Routledge, 2014.

2. Chase, Becky Tarver. Pathways: Listening, Speaking and Critical Thinking. Heinley ELT;

2nd Edition, 2018.

- 3. Skillful Level 2 Reading & Writing Student's Book Pack (B1) MacmillanEducational.
- 4. Hewings, Martin. Cambridge Academic English (B2). CUP,2012.

I Voor I Somoston		L	Т	P	С
I Year - I Semester		3	0	0	3
	MATHEMATICS-I				
	(Common to all Branch's for I Year B.Tech)				

Course Objectives:

- This course will illuminate the students in the concepts of calculus.
- To enlighten the learners in the concept of differential equations and multivariable calculus.
- To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real world problems and theirapplications.

Course Outcomes: At the end of the course, the student will be able to

- utilize mean value theorems to real life problems (L3)
- solve the differential equations related to various engineering fields(L3)
- familiarize with functions of several variables which is useful in optimization(L3)
- Apply double integration techniques in evaluating areas bounded by region(L3)
- students will also learn important tools of calculus in higher dimensions. Students will become familiar with 2- dimensional and 3-dimensional coordinate systems (L5)

UNIT I: Sequences, Series and Meanvaluetheorems:

Sequences and Series: Convergences and divergence – Ratio test – Comparison tests – Integral test – Cauchy's root test – Alternate series – Leibnitz's rule.

Mean Value Theorems (without proofs): Rolle's Theorem – Lagrange's mean value theorem – Cauchy's mean value theorem – Taylor's and Maclaurin's theorems with remainders.

UNIT II: Differential equations of first order and first degree:

Linear differential equations – Bernoulli's equations – Exact equations and equations reducible to exactform.

Applications: Newton's Law of cooling – Law of natural growth and decay – Orthogonal trajectories – Electrical circuits.

(**10hrs**)

(10 hrs)

UNIT III: Linear differential equations of higher order:

Non-homogeneous equations of higher order with constant coefficients – with non-homogeneous term of the type e^{ax} , sin ax, cos ax, polynomials in x^n , $e^{ax}V(x)$ and $x^nV(x)$ – Method of Variation of parameters.

Applications: LCR circuit, Simple Harmonic motion.

UNIT IV:Partialdifferentiation:

Introduction – Homogeneous function – Euler's theorem – Total derivative – Chain rule – Jacobian – Functional dependence – Taylor's and Mc Laurent's series expansion of functions of two variables.

Applications: Maxima and Minima of functions of two variables without constraints and Lagrange's method (with constraints).

UNIT V:Multipleintegrals:

Double and Triple integrals – Change of order of integration – Change of variables. Applications: Finding Areas and Volumes.

Text Books:

- 1. **B. S. Grewal**, Higher Engineering Mathematics, 43rd Edition, KhannaPublishers.
- 2. **B. V. Ramana**, Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.

Reference Books:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India.
- 2. Joel Hass, Christopher Heil and Maurice D. Weir, Thomas calculus, 14th Edition, Pearson.
- 3. Lawrence Turyn, Advanced Engineering Mathematics, CRC Press, 2013.
- 4. Srimantha Pal, S C Bhunia, Engineering Mathematics, Oxford UniversityPress.

(10 hrs)

(10 hrs)

(8hrs)

I Year - I Semester		L	Т	Р	С
I Year - I Semester		3	0	0	3
	APPLIED CHEMISTRY				

Knowledge of basic concepts of Chemistry for Engineering students will help them as professional engineers later in design and material selection, as well as utilizing the available resources.

Learning Objectives:

- *Importance* of usage of plastics in household appliances and composites (FRP) in aerospace and automotiveindustries.
- *Outline* the basics for the construction of electrochemical cells, batteries and fuel cells. Understand the mechanism of corrosion and how it can be prevented.
- *Express* the increase in demand as wide variety of advanced materials are introduced; which have excellent engineeringproperties.
- *Explain* the crystal structures, and the preparation of semiconductors. Magnetic properties are alsostudied.
- *Recall* the increase in demand for power and hence alternative sources of power are studied due to depleting sources of fossil fuels. Advanced instrumental techniques are introduced.

UNIT I POLYMER TECHNOLOGY

Polymerisation:-Introduction-methods of polymerization (emulsion and suspension)-physical and mechanical properties.

Plastics: Compounding-fabrication (compression, injection, blown film, extrusion) - preparation, properties and applications of PVC, polycarbonates and Bakelite-mention some examples of plastic materials used in electronic gadgets, recycling of e-plastic waste.

Elastomers:-Natural rubber-drawbacks-vulcanization-preparation, properties and applications of synthetic rubbers (Buna S, thiokol and polyurethanes).

Composite materials: Fiber reinforced plastics-conducting polymers-biodegradable polymers-biopolymers-biomedical polymers.

Learning Outcomes: At the end of this unit, the students will be able to

- *Outline* the properties of polymers and various additives added and different methods of forming plasticmaterials.
- *Explain* the preparation, properties and applications of some plasticmaterials.
- *Interpret* the mechanism of conduction in conducting polymers.
- *Discuss* natural and synthetic rubbers and theirapplications.

UNIT II: ELECTROCHEMICAL CELLS AND CORROSION

Single electrode potential-Electrochemical series and uses of series-standard hydrogen electrode, calomel electrode-concentration cell-construction of glass electrode-Batteries: Dry cell, Ni-Cd cells, Ni-Metal hydride cells, Li ion battery, zinc air cells–Fuel cells: H₂-O₂, CH₃OH-O₂, phosphoric acid, molten carbonate.

*Corrosion:-*Definition-theories of corrosion (chemical and electrochemical)-galvanic corrosion, differential aeration corrosion, stress corrosion, waterline corrosion-passivity of metals-galvanic series-factors influencing rate of corrosion-corrosion control (proper designing, cathodic

protection)-Protective coatings: Surface preparation, cathodic and anodic coatings, electroplating, electroless plating (nickel). Paints (constituents, functions, specialpaints).

Learning Outcomes: At the end of this unit, the students will be able to

- *Explain* the theory of construction of battery and fuelcells.
- *Categorize* the reasons for corrosion and study some methods of corrosioncontrol.

UNIT III: MATERIAL CHEMISTRY

Part I : *Non-elemental semiconducting materials:*- Stoichiometric, controlled valency & chalcogen photo/semiconductors-preparation of semiconductors (distillation, zone refining, Czochralski crystal pulling, epitaxy, diffusion, ion implantation) - Semiconductor devices (p-n junction diode as rectifier, junction transistor).

Insulators & magnetic materials: electrical insulators-ferro and ferri magnetism-Hall effect and its applications.

Part II:

*Nano materials:-*Introduction-sol-gel method- characterization by BET, SEM and TEM methods-applications of graphene-carbon nanotubes and fullerenes: Types, preparation and applications

Liquid crystals:-Introduction-types-applications.

*Super conductors:-*Type –I, Type II-characteristics and applications

Learning Outcomes: At the end of this unit, the students will be able to

- *Understand* the importance of materials like nanomaterials and fullerenes and theiruses.
- *Understand* liquid crystals and superconductors.
- *Understand* the preparation of semiconductors.

UNIT IV: ADVANCED CONCEPTS/TOPICS IN CHEMISTRY

Computational chemistry: Introduction, Ab Initio studies

Molecular switches: characteristics of molecular motors and machines, Rotaxanes and Catenanes as artificial molecular machines, prototypes – linear motions in rotaxanes, an acid-base controlled molecular shuttle, a molecular elevator, an autonomous light-powered molecular motor

Learning Outcomes: At the end of this unit, the students will be able to

- *Obtain* the knowledge of computationalchemistry
- Understand importance molecularmachines

UNIT V: SPECTROSCOPIC TECHNIQUES & NON CONVENTIONAL ENERGY SOURCES

Part A: SPECTROSCOPIC TECHNIQUES

Electromagnetic spectrum-UV (laws of absorption, instrumentation, theory of electronic spectroscopy, Frank-condon principle, chromophores and auxochromes, intensity shifts, applications), FT-IR (instrumentation and IR of some organic compounds, applications)-magnetic resonance imaging and CT scan (procedure & applications).

Part B: NON CONVENTIONAL ENERGY SOURCES

Design, working, schematic diagram, advantages and disadvantages of photovoltaic cell, hydropower, geothermal power, tidal and wave power, ocean thermal energy conversion.

ALANDA A

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Learning Outcomes: At the end of this unit, the students will be able to

- understand the principles of different analyticalinstruments.
- explain the different applications of analyticalinstruments.
- design sources of energy by different naturalsources.

Standard Books:

1. Engineering Chemistry by Jain and Jain; Dhanpat Rai Publicating Co.

Reference Books:

1. Engineering Chemistry by Shikha Agarwal; Cambridge University Press, 2019edition.

I Year - I Semester		L	Т	Р	С		
		3	0	0	3		
DDOCDAMMING FOD DDORI FM SOLVING LISING C							

PROGRAMMING FOR PROBLEM SOLVING USING C

COURSE OBJECTIVES: <u>COURSE OBJECTIVES:</u>

The objectives of Programming for Problem Solving Using C are

- 1) To learn about the computer systems, computing environments, developing of acomputer program and Structure of a CProgram
- 2) To gain knowledge of the operators, selection, control statements and repetition inC
- 3) To learn about the design concepts of arrays, strings, enumerated structure and union types. To learn about theirusage.
- 4) To assimilate about pointers, dynamic memory allocation and know the significance of Preprocessor.
- 5) To assimilate about File I/O and significance offunctions

UNIT I

Introduction to Computers: Creating and running Programs, Computer Numbering System, Storing Integers, Storing Real Numbers

Introduction to the C Language: Background, C Programs, Identifiers, Types, Variable, Constants, Input/output, Programming Examples, Scope, Storage Classes and Type Qualifiers. **Structure of a C Program:** Expressions Precedence and Associativity, Side Effects, Evaluating Expressions, Type Conversion Statements, Simple Programs, Command Line Arguments.

UNIT II

Bitwise Operators: Exact Size Integer Types, Logical Bitwise Operators, Shift Operators. **Selection & Making Decisions:** Logical Data and Operators, Two Way Selection, Multiway Selection, More Standard Functions

Repetition: Concept of Loop, Pretest and Post-test Loops, Initialization and Updating, Event and Counter Controlled Loops, Loops in C, Other Statements Related to Looping, Looping Applications, Programming Examples

UNIT III

Arrays: Concepts, Using Array in C, Array Application, Two Dimensional Arrays, Multidimensional Arrays, Programming Example – CalculateAverages **Strings:** String Concepts, C String, String Input / Output Functions, Arrays of Strings, String Manipulation Functions String/ Data Conversion, A Programming Example – Morse Code **Enumerated, Structure, and Union:** The Type Definition (Type def), Enumerated Types,

Structure, Unions, and Programming Application

UNIT IV

Pointers: Introduction, Pointers to pointers, Compatibility, L value and R value **Pointer Applications:** Arrays, and Pointers, Pointer Arithmetic and Arrays, Memory Allocation Function, Array of Pointers, Programming Application **Processor Commands**: Processor Commands

UNIT V

Functions: Designing, Structured Programs, Function in C, User Defined Functions, Inter-Function Communication, Standard Functions, Passing Array to Functions, Passing Pointers to Functions, Recursion

Text Input / Output: Files, Streams, Standard Library Input / Output Functions, Formatting Input / Output Functions, Character Input / Output Functions

Binary Input / Output: Text versus Binary Streams, Standard Library, Functions for Files, Converting File Type.

TEXT BOOKS:

- 1. Programming for Problem Solving, Behrouz A. Forouzan, Richard F.Gilberg, CENGAGE
- 2. The C Programming Language, Brian W.Kernighan, Dennis M. Ritchie, 2e, Pearson

REFERENCES:

- 1. Computer Fundamentals and Programming, Sumithabha Das, Mc GrawHill
- 2. Programming in C, Ashok N. Kamthane, Amit Kamthane, Pearson
- 3. Computer Fundamentals and Programming in C, Pradip Dey, Manas Ghosh, OXFORD

COURSE OUTCOMES:

Upon the completion of the course the student will learn

- 1) To write algorithms and to draw flowcharts for solvingproblems
- 2) To convert flowcharts/algorithms to C Programs, compile and debugprograms
- 3) To use different operators, data types and write programs that use two-way/ multi-way selection
- 4) To select the best loop construct for a givenproblem
- 5) To design and implement programs to analyze the different pointerapplications
- 6) To decompose a problem into functions and to develop modular reusablecode
- 7) To apply File I/Ooperations

I Year - I Semester		L	Т	P	С
		1	0	3	2.5
	ENGINEERING DRAWING				

Course Objective: Engineering drawing being the principal method of communication for engineers, the objective is to introduce the students, the techniques of constructing the various types of polygons, curves and scales. The objective is also to visualize and represent the 3D objects in 2D planes with proper dimensioning, scalingetc.

Unit I

Objective: To introduce the students to use drawing instruments and to draw polygons, Engg.Curves.

Polygons: Constructing regular polygons by general methods, inscribing and describing polygons on circles.

Curves: Parabola, Ellipse and Hyperbola by general and special methods, cycloids,

involutes, tangents & normals for thecurves.

Scales: Plain scales, diagonal scales and vernier scales

UnitII

Objective: To introduce the students to use orthographic projections, projections of points & simple lines. To make the students draw the projections of the lines inclined to both the planes.

Orthographic Projections: Reference plane, importance of reference lines, projections of points in various quadrants, projections of lines, line parallel to both the planes, line parallel to one plane and inclined to otherplane.

Projections of straight lines inclined to both the planes, determination of true lengths, angle of inclination and traces.

Unit III

Objective: The objective is to make the students draw the projections of the plane inclined to both the planes.

Projections of planes: regular planes perpendicular/parallel to one reference plane and inclined to the other reference plane; inclined to both the reference planes.

Unit IV

Objective: The objective is to make the students draw the projections of the various types of solids in different positions inclined to one of the planes.

Projections of Solids – Prisms, Pyramids, Cones and Cylinders with the axis inclined to both the planes.

Unit V

Objective: The objective is to represent the object in 3D view through isometric views. The student will be able to represent and convert the isometric view to orthographic view and viceversa.

Conversion of isometric views to orthographic views; Conversion of orthographic views to isometric views.

Computer Aided Design, Drawing practice using Auto CAD, Creating 2D&3D drawings of objects using Auto CAD

Note: In the End Examination there will be no question from CAD.

TEXT BOOKS:

- 1. Engineering Drawing by N.D. Butt, ChariotPublications
- 2. Engineering Drawing by Agarwal & Agarwal, Tata McGraw HillPublishers

REFERENCE BOOKS:

- 1. Engineering Drawing by K.L.Narayana & P. Kannaiah, ScitechPublishers
- 2. Engineering Graphics for Degree by K.C. John, PHIPublishers
- 3. Engineering Graphics by PI Varghese, McGrawHillPublishers
- 4. Engineering Drawing + AutoCad K Venugopal, V. Prabhu Raja, NewAge

Course Outcome: The student will learn how to visualize 2D & 3D objects.

I Year - I Semester		L	Т	Р	С
		0	0	3	1.5
	ENGLISH LAB			I	1

UNIT I:

Vowels, Consonants, Pronunciation, Phonetic Transcription

UNIT II:

Past tense markers, word stress-di-syllabic words, Poly-Syllabic words

UNIT III:

Rhythm & Intonation

UNIT IV:

Contrastive Stress (Homographs)

UNIT V:

Word Stress: Weak and Strong forms Stress in compound words

References books:

- 1. Infotech English, Maruthi Publications. (with CompactDisc)
- 2. Exercises in Spoken English Part 1,2,3,4, OUP and CIEFL.
- 3. English Pronunciation in use- Mark Hancock, Cambridge UniversityPress.
- 4. English Phonetics and Phonology-Peter Roach, Cambridge UniversityPress.
- 5. English Pronunciation in use- Mark Hewings, Cambridge UniversityPress.
- 6. English Pronunciation Dictionary- Daniel Jones, Cambridge UniversityPress.
- 7. English Phonetics for Indian Students- P. Bala Subramanian, Mac Millan Publications.

I Year - I Semester		L	Τ	P	С
		0	0	3	1.5
	APPLIED CHEMISTRY LAB		1		

Introduction to Chemistry laboratory – Molarity, normality, primary, secondary standard solutions,

volumetric titrations, quantitative analysis

- 1. Determination of HCl using standard Na₂CO₃solution.
- 2. Determination of alkalinity of a sample containing Na₂CO₃ and NaOH.
- 3. Determination of Mn (II) using standard oxalic acidsolution.
- 4. Determination of ferrous iron using standard K₂Cr₂O₇solution.
- 5. Determination of copper (II) using standard hyposolution.
- 6. Determination of temporary and permanent hardness of water using standard EDTA solution.
- 7. Determination of iron (III) by a colorimetricmethod.
- 8. Determination of the concentration of acetic acid using sodium hydroxide (pH-metry method).
- 9. Determination of the concentration of strong acid vs strong base (by conductometric method).
- 10. Determination of strong acid vs strong base (by potentiometricmethod).
- 11. Determination of Mg^{+2} present n an antacid.
- 12. Determination of $CaCO_3$ present in an eggshell.
- 13. Estimation of VitaminC.
- 14. Determination of phosphoric content in softdrinks.
- 15. Adsorption of acetic acid bycharcoal.
- 16. Preparation of nylon-6, 6 and Bakelite (demonstrationonly).Of the above experiments at-least 10 assessment experiments should be completed in a semester.

Outcomes: The students entering into the professional course have practically very little exposure to lab classes. The experiments introduce volumetric analysis; redox titrations with different indicators; EDTA titrations; then they are exposed to a few instrumental methods of chemical analysis. Thus at the end of the lab course, the student is exposed to different methods of chemical analysis and use of some commonly employed instruments. They thus acquire some experimental skills.

Reference Books

1. A Textbook of Quantitative Analysis, Arthur J.Vogel.

I Year - I Semester		L	Т	P	С	
		0	0	3	1.5	

PROGRAMMING FOR PROBLEM SOLVING USING C LAB

Course Objectives:

- 1) Apply the principles of C language in problemsolving.
- 2) To design flowcharts, algorithms and knowing how to debugprograms.
- 3) To design & develop of C programs using arrays, strings pointers & functions.
- 4) To review the file operations, preprocessorcommands.

Exercise 1:

- 1. Write a C program to print a block F using hash (#), where the F has a height of six characters and width of five and fourcharacters.
- 2. Write a C program to compute the perimeter and area of a rectangle with a height of 7 inches and width of 5inches.
- 3. Write a C program to display multiplevariables.

Exercise 2:

- 1. Write a C program to calculate the distance between the twopoints.
- 2. Write a C program that accepts 4 integers p, q, r, s from the user where r and s are positive and p is even. If q is greater than r and s is greater than p and if the sum of r and s is greater than the sum of p and q print "Correct values", otherwise print "Wrongvalues".

Exercise 3:

- 1. Write a C program to convert a string to a longinteger.
- 2. Write a program in C which is a Menu-Driven Program to compute the area of the various geometricalshape.
- 3. Write a C program to calculate the factorial of a givennumber.

Exercise 4:

- 1. Write a program in C to display the n terms of even natural number and theirsum.
- 2. Write a program in C to display the n terms of harmonic series and their sum. $1 + 1/2 + 1/3 + 1/4 + 1/5 \dots 1/n$ terms.
- 3. Write a C program to check whether a given number is an Armstrong number ornot. **Exercise 5:**
 - 1. Write a program in C to print all unique elements in anarray.
 - 2. Write a program in C to separate odd and even integers in separatearrays.
 - 3. Write a program in C to sort elements of array in ascendingorder.

Exercise 6:

- 1. Write a program in C for multiplication of two square Matrices.
- 2. Write a program in C to find transpose of a givenmatrix.

Exercise 7:

- 1. Write a program in C to search an element in a row wise and column wise sorted matrix.
- 2. Write a program in C to print individual characters of string in reverseorder.

Exercise 8:

- 1. Write a program in C to compare two strings without using string library functions.
- 2. Write a program in C to copy one string to anotherstring.

Exercise 9:

- 1. Write a C Program to Store Information Using Structures with Dynamically Memory Allocation
- 2. Write a program in C to demonstrate how to handle the pointers in the program.

Exercise 10:

- 1. Write a program in C to demonstrate the use of & (address of) and *(value at address)operator.
- 2. rite a program in C to add two numbers usingpointers.

Exercise 11:

- 1. Write a program in C to add numbers using call byreference.
- 2. Write a program in C to find the largest element using Dynamic MemoryAllocation.

Exercise 12:

- 1. Write a program in C to swap elements using call byreference.
- 2. Write a program in C to count the number of vowels and consonants in a string using apointer.

Exercise 13:

- 1. Write a program in C to show how a function returningpointer.
- 2. Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using malloc() function.

Exercise 14:

1. Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using calloc() function. Understand the difference between the above twoprograms

2. Write a program in C to convert decimal number to binary number using thefunction.

Exercise 15:

- 1. Write a program in C to check whether a number is a prime number or not using the function.
- 2. Write a program in C to get the largest element of an array using thefunction.

Exercise 16:

- 1. Write a program in C to append multiple lines at the end of a textfile.
- 2. Write a program in C to copy a file in anothername.
- 3. Write a program in C to remove a file from thedisk.

Course Outcomes:

By the end of the Lab, the student

- 1) Gains Knowledge on various concepts of a Clanguage.
- 2) Able to draw flowcharts and writealgorithms.
- 3) Able design and development of C problem solvingskills.
- 4) Able to design and develop modular programmingskills.
- 5) Able to trace and debug aprogram

I Year - I Semester		L	Т	Р	С
		3	0	0	0
	ENVIRONMENTAL SCIENCE		1	1	1

Learning Objectives:

The objectives of the course are to impart:

- Overall understanding of the natural resources.
- Basic understanding of the ecosystem and itsdiversity.
- Acquaintance on various environmental challenges induced due to unplanned anthropogenic activities.
- An understanding of the environmental impact of developmental activities.
- Awareness on the social issues, environmental legislation and globaltreaties.

UNIT-I:

Multidisciplinary nature of Environmental Studies: Definition, Scope and Importance – Sustainability: Stockholm and Rio Summit–Global Environmental Challenges: Global warming and climate change, acid rains, ozone layer depletion, population growth and explosion, effects;.Role of information technology in environment and human health.

Ecosystems: Concept of an ecosystem. - Structure and function of an ecosystem; Producers, consumers and decomposers. - Energy flow in the ecosystem - Ecological succession. - Food chains, food webs and ecological pyramids; Introduction, types, characteristic features, structure and function of Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems.

UNIT-II:

Natural Resources: Natural resources and associated problems.

Forest resources: Use and over – exploitation, deforestation – Timber extraction – Mining, dams and other effects on forest and tribal people.

Water resources: Use and over utilization of surface and ground water – Floods, drought, conflicts over water, dams – benefits and problems.

Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources.

Food resources: World food problems, changes caused by non-agriculture activities-effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity.

Energy resources: Growing energy needs, renewable and non-renewable energy sources use of alternate energy sources.

Land resources: Land as a resource, land degradation, Wasteland reclamation, man induced landslides, soil erosion and desertification; Role of an individual in conservation of natural resources; Equitable use of resources for sustainable lifestyles.

UNIT-III:

Biodiversity and its conservation: Definition: genetic, species and ecosystem diversityclassification - Value of biodiversity: consumptive use, productive use, social-Biodiversity at national and local levels. India as a mega-diversity nation - Hot-sports of biodiversity - Threats to biodiversity: habitat loss, man-wildlife conflicts. - Endangered and endemic species of India – Conservation of biodiversity: conservation ofbiodiversity.

$\mathbf{UNIT} - \mathbf{IV}$

Environmental Pollution: Definition, Cause, effects and control measures of Air pollution, Water pollution, Soil pollution, Noise pollution, Nuclear hazards. Role of an individual in prevention of pollution. - Pollution case studies, Sustainable Life Studies. Impact of Fire Crackers on Men and his wellbeing.

Solid Waste Management: Sources, Classification, effects and control measures of urban and industrial solid wastes. Consumerism and waste products, Biomedical, Hazardous and e – waste management.

$\mathbf{UNIT} - \mathbf{V}$

Social Issues and the Environment: Urban problems related to energy -Water conservation, rain water harvesting-Resettlement and rehabilitation of people; its problems and concerns. Environmental ethics: Issues and possible solutions. Environmental Protection Act -Air (Prevention and Control of Pollution) Act. –Water (Prevention and control of Pollution) Act - Wildlife Protection Act -Forest Conservation Act-Issues involved in enforcement of environmental legislation. -Publicawareness.

$\mathbf{UNIT} - \mathbf{VI}$

Environmental Management: Impact Assessment and its significance various stages of EIA, preparation of EMP and EIS, Environmental audit. Ecotourism, Green Campus – Green business and Green politics.

The student should Visit an Industry / Ecosystem and submit a report individually on any issues related to Environmental Studies course and make a power point presentation.

Text Books:

- 1. Environmental Studies, K. V. S. G. Murali Krishna, VGS Publishers, Vijayawada
- 2. Environmental Studies, R. Rajagopalan, 2nd Edition, 2011, Oxford UniversityPress.
- 3. EnvironmentalStudies, P. N. Palanisamy, P. Manikandan, A. Geetha, and K. Manjula Rani; Pearson Education, Chennai

- 1. Text Book of Environmental Studies, Deeshita Dave & P. Udaya Bhaskar, Cengage Learning.
- 2. A Textbook of Environmental Studies, Shaashi Chawla, TMH, NewDelhi
- 3. Environmental Studies, Benny Joseph, Tata McGraw Hill Co, NewDelhi
- 4. Perspectives in Environment Studies, Anubha Kaushik, C P Kaushik, New AgeInternational Publishers, 2014

I Year - II Semester		L	Т	Р	С
		3	0	0	3
	MATHEMATICS - II	1			
	(Common to all Branch for I Year B. Tech)				

Course Objectives:

- To instruct the concept of Matrices in solving linear algebraic equations
- To elucidate the different numerical methods to solve nonlinear algebraic equations
- To disseminate the use of different numerical techniques for carrying out numerical integration.
- To equip the students with standard concepts and tools at an intermediate to advanced level mathematics to develop the confidence and ability among the students to handle various real world problems and theirapplications.

Course Outcomes: At the end of the course, the student will be able to

- develop the use of matrix algebra techniques that is needed by engineers for practical applications(L6)
- solve system of linear algebraic equations using Gauss elimination, Gauss Jordan, Gauss Seidel(L3)
- evaluate approximating the roots of polynomial and transcendental equations by different algorithms(L5)
- apply Newton's forward & backward interpolation and Lagrange's formulae for equal and unequal intervals(L3)
- apply different algorithms for approximating the solutions of ordinary differential equations to its analytical computations(L3)

Unit I: Solving systems of linear equations, Eigen values and Eigenvectors: (10 hrs)

Rank of a matrix by echelon form and normal form – Solving system of homogeneous and nonhomogeneous equations linear equations – Gauss Elimination for solving system of equations – Eigen values and Eigen vectors and their properties.

Unit-II: Cayley-Hamilton theorem and Quadratic forms: (10hrs)

Cayley-Hamilton theorem (without proof) – Finding inverse and power of a matrix by Cayley-Hamilton theorem – Reduction to Diagonal form – Quadratic forms and nature of the quadratic forms – Reduction of quadratic form to canonical forms by orthogonal transformation. Singular values of a matrix, singular value decomposition (Ref. Book – 1). UNIT III:Iterativemethods: (8 hrs)

MULTER DUCING

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Introduction – Bisection method – Secant method – Method of false position – Iteration method – Newton-Raphson method (One variable and simultaneous Equations) – Jacobi and Gauss-Seidel methods for solving system of equations.

UNITIV:Interpolation:

(10 hrs)

Introduction – Errors in polynomial interpolation – Finite differences – Forward differences – Backward differences – Central differences – Relations between operators – Newton's forward and backward formulae for interpolation – Interpolation with unequal intervals – Lagrange's interpolation formula – Newton's divide difference formula.

UNIT V: Numerical integration and solution of ordinary differential equations: (10 hrs)

Trapezoidal rule – Simpson's $1/3^{rd}$ and $3/8^{th}$ rule – Solution of ordinary differential equations by Taylor's series – Picard's method of successive approximations – Euler's method – Runge-Kutta method (second and fourthorder).

Text Books:

- 1. B. S. Grewal, Higher Engineering Mathematics, 43rd Edition, KhannaPublishers.
- **2. B. V. Ramana,** Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.

Reference Books:

- 1. David Poole, Linear Algebra- A modern introduction, 4th Edition, Cengage.
- **2. Steven C. Chapra,** Applied Numerical Methods with MATLAB for Engineering and Science, Tata Mc. Graw HillEducation.
- **3. M. K. Jain, S. R. K. Iyengar and R. K. Jain,** Numerical Methods for Scientific and Engineering Computation, New Age International Publications.
- 4. Lawrence Turyn, Advanced Engineering Mathematics, CRCPress.

I Year - II Semester		L	Т	P	С
		3	0	0	3
MATHEMATICS - III					
	(Common to all Branch for I Year B. Tech)				

Course Objectives:

- To familiarize the techniques in partial differential quations
- To furnish the learners with basic concepts and techniques at plus two level to lead them into advanced level by handling various real worldapplications.

Course Outcomes: At the end of the course, the student will be able to

- interpret the physical meaning of different operators such as gradient, curl anddivergence (L5)
- estimate the work done against a field, circulation and flux using vector calculus(L5)
- apply the Laplace transform for solving differential equations(L3)
- find or compute the Fourier series of periodic signals(L3)
- know and be able to apply integral expressions for the forwards and inverse Fourier transform to a range of non-periodic waveforms(L3)
- identify solution methods for partial differential equations that model physical processes (L3)

Unit – I:Vectorcalculus:

Vector Differentiation: Gradient – Directional derivative – Divergence – Curl – Scalar Potential.

Vector Integration: Line integral – Work done – Area – Surface and volume integrals – Vector integral theorems: Greens, Stokes and Gauss Divergence theorems (without proof).

Unit –II:LaplaceTransforms:

Laplace transforms of standard functions – Shifting theorems – Transforms of derivatives and integrals – Unit step function – Dirac's delta function – Inverse Laplace transforms – Convolution theorem (with out proof).

Applications: Solving ordinary differential equations (initial value problems) using Laplace transforms.

(10 hrs)

(10 hrs)

Unit –III: Fourier series and Fourier Transforms:

Fourier Series: Introduction – Periodic functions – Fourier series of periodic function – Dirichlet's conditions – Even and odd functions – Change of interval – Half-range sine and cosine series.

Fourier Transforms: Fourier integral theorem (without proof) – Fourier sine and cosine integrals – Sine and cosine transforms – Properties – inverse transforms – Finite Fourier transforms.

Unit -IV: PDE offirstorder:

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions – Solutions of first order linear (Lagrange) equation and nonlinear (standard types) equations.

UNIT V: Second order PDEand Applications:

SecondorderPDE:Solutionsoflinearpartialdifferentialequationswithconstantcoefficients– RHS term of the type e^{ax+by} , sin(ax + by), cos(ax + by), $x^m y^n$.

Applications of PDE: Method of separation of Variables – Solution of One dimensional Wave, Heat and two-dimensional Laplace equation.

Text Books:

- 1. **B. S. Grewal,** Higher Engineering Mathematics, 43rd Edition, KhannaPublishers.
- 2. **B. V. Ramana**, Higher Engineering Mathematics, 2007 Edition, Tata Mc. Graw Hill Education.

Reference Books:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India.
- 2. **Dean. G. Duffy,**Advanced Engineering Mathematics with MATLAB, 3rd Edition, CRC Press.
- 3. Peter O' Neil, Advanced Engineering Mathematics, Cengage.
- 4. Srimantha Pal, S C Bhunia, Engineering Mathematics, Oxford UniversityPress.

(8hrs)

(10 hrs)

(10hrs)

ALINADA

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

I Year - II Semester		L	Т	P	C	
		3	0	0	3	
APPLIED PHYSICS						

Course Objectives:

Physics curriculum which is re-oriented to the needs of Circuital branches of graduate engineering courses offered by Jawaharlal Nehru Technological University Kakinada that serves as a transit to understand the branch specific advanced topics. The course is designed to:

- Impart Knowledge of Physical Optics phenomena like Interference and Diffraction required to design instruments with higher resolution.
- Understand the physics of Semiconductors and their working mechanism for their utility insensors.
- > To impart the knowledge of materials with characteristic utility inappliances.

UNIT-I

WAVE OPTICS: Principle of Superposition - Interference of light - Conditions for sustained Interference - Interference in thin films (reflected geometry) - Newton's Rings (reflected geometry).

Diffraction - Fraunhofer Diffraction - Diffraction due to Single slit (quantitative), Double slit, N -slits and circular aperture (qualitative) – Intensity distribution curves - Diffraction Grating – Grating spectrum – missing order – resolving power – Rayleigh's criterion – Resolving powers of Microscope, Telescope and grating(qualitative).

Unit Outcomes:

The students will be able to

- > explain the need of coherent sources and the conditions for sustained interference.
- > analyze the differences between interference and diffraction with applications.
- > illustrate the resolving power of various optical instruments.

UNIT-II

QUANTUM MECHANICS: Introduction – Matter waves – de Broglie's hypothesis – Davisson-Germer experiment – G. P. Thomson experiment – Heisenberg's Uncertainity Principle –interpretation of wave function – Schröedinger Time Independent and Time Dependent wave equations – Particle in a potentialbox.

(10hrs)

(9hrs)

Unit Outcomes:

The students will be able to

- > explain the fundamental concepts of quantum mechanics.
- > analyze the physical significance of wavefunction.
- > **apply**Schrödinger's wave equation for energy values of a free particle.

UNIT-III

FREE ELECTRON THEORY & BAND THEORY OF SOLIDS : Introduction – Classical free electron theory (merits and demerits only) - Quantum Free electron theory – electrical conductivity based on quantum free electron theory – Fermi Dirac distribution function – Temperature dependence of Fermi-Dirac distribution function - expression for Fermi energy -

Density of states.

Bloch's theorem (qualitative) – Kronig-Penney model(qualitative) – energy bands in crystalline solids – E Vs K diagram – classification of crystalline solids – effective mass of electron – m^* Vs K diagram - concept of hole.

Unit Outcomes:

The students will be able to

- > explain the various electron theories.
- **calculate**the Fermienergy.
- > **analyze**the physical significance of wave function.
- > interpret the effects of temperature on Fermi Dirac distribution function.
- > summarisevarious types of solids based on bandtheory.

UNIT-IV

(9hrs)

(10hrs)

SEMICONDUCTOR PHYSICS: Introduction – Intrinsic semi conductors - density of charge carriers - Electrical conductivity – Fermi level – extrinsic semiconductors - p-type & n-type - Density of charge carriers - Dependence of Fermi energy on carrier concentration and temperature – Hall effect- Hall coefficient - Applications of Hall effect - Drift and Diffusion currents – Einstein's equation.

Learning Outcomes:

The students will be able to

- classify the energy bands of semiconductors.
- > **outline**the properties of n-type and p-typesemiconductors.
- > identify the type of semiconductor using Halleffect.

UNIT-V

(**10 hrs**)

MAGNETISM & DIELECTRICS: Introduction – Magnetic dipole moment – Magnetization – Magnetic susceptibility and permeability – Origin of permanent magnetic moment – Bohr magneton – Classification of magnetic materials: Dia, para & Ferro – Domain concept of Ferromagnetism - Hysteresis – soft and hard magnetic materials – applications of Ferromagnetic material.

Introduction - Dielectic polarization – Dielectric Polarizability, Susceptibility and Dielectric constant-types of polarizations: Electronic and Ionic (Quantitative), Orientational polarizations (qualitative) – Lorentz Internal field – Claussius-Mossoti equation - Frequency dependence of polarization – Applications of dielectrics.

Unit Outcomes:

The students will be able to

- > explain the concept of polarization in dielectric materials.
- summarizevarious types of polarization of dielectrics.
- > interpretLorentz field and Claussius- Mosotti relation indielectrics.
- > classify the magnetic materials based on susceptibility and their temperature dependence.
- > explain the applications of dielectric and magnetic materials.
- > Apply the concept of magnetism to magneticdevices.

TEXT BOOKS:

- 1. "A Text book of Engineering Physics" by M.N. Avadhanulu, P.G.Kshirsagar S.Chand Publications, 2017.
- 2. "Engineering Physics" by D.K.Bhattacharya and Poonam Tandon, Oxford press(2015).
- 3. "Engineering Physics" by R.K Gaur. and S.L Gupta., Dhanpat Rai publishers, 2012.

REFERENCE BOOKS:

- 1. "Engineering Physics" by M. R. Srinivasan, New Age international publishers(2009).
- 2. "Optics" by Ajoy Ghatak, 6th Edition McGraw Hill Education, 2017.
- 3. "Solid State Physics" by A. J. Dekker, Mc Millan Publishers(2011).

I Year - II Semester		L	Т	Р	С	
		3	0	0	3	
NETWORK ANALYSIS						

UNIT – I

Introduction to Electrical Circuits : Network elements classification, Electric charge and current, Electric energy and potential, Resistance parameter – series and parallel combination, Inductance parameter – series and parallel combination, Capacitance parameter – series and parallel combination. Energy sources: Ideal, Non-ideal, Independent and dependent sources, Source transformation, Kirchoff's laws, Mesh analysis and Nodal analysis problem solving with resistances only including dependent sources also. (Text Books: 1,2,3, Reference Books: 3)

Fundamentals and Network Topology: Definitions of terms associated with periodic functions: Time period, Angular velocity and frequency, RMS value, Average value, Form factor and peak factor- problem solving, Phase angle, Phasor representation, Addition and subtraction of phasors, mathematical representation of sinusoidal quantities, explanation with relevant theory, problem solving. Principal of Duality withexamples.

Network Topology: Definitions of branch, node, tree, planar, non-planar graph, incidence matrix, basic tie set schedule, basic cut set schedule. (Text Books: 2,3, Reference Books: 3)

UNIT – II

Transients :First order differential equations, Definition of time constants, R-L circuit, R-C circuit with DC excitation, Evaluating initial conditions procedure, second order differential equations, homogeneous, non-homogenous, problem solving using R-L-C elements with DC excitation and AC excitation, Response as related to s-plane rotation of roots. Solutions using Laplace transform method. (Text Books: 1,2,3, Reference Books: 1,3)

$\mathbf{UNIT} - \mathbf{III}$

Steady State Analysis of A.C Circuits :Impedance concept, phase angle, series R-L, R-C, R-L-C circuits problem solving. Complex impedance and phasor notation for R-L, R-C, R-L-C problem solving using mesh and nodal analysis, Star-Delta conversion, problem solving. (Text Books: 1,2, Reference Books: 3)

Coupled Circuits :Coupled Circuits: Self inductance, Mutual inductance, Coefficient of coupling, analysis of coupled circuits, Natural current, Dot rule of coupled circuits, Conductively coupled equivalent circuits- problem solving.

$\mathbf{UNIT} - \mathbf{IV}$

Resonance: Introduction, Definition of Q, Series resonance, Bandwidth of series resonance, Parallel resonance, Condition for maximum impedance, current in anti resonance, Bandwidth of

ALL REAL PROPERTY OF CONTRACT OF CONTRACT

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

parallel resonance, general case-resistance present in both branches, anti resonance at all frequencies. (Text Books:2,3, Reference Books: 3)

Network Theorems: Thevinin's, Norton's, Milliman's, Reciprocity, Compensation, Substitution, Superposition, Max Power Transfer, Tellegens- problem solving using dependent sources also. (Text Books: 1,2,3, Reference Books:2)

UNIT – V

Two-port Networks: Relationship of two port networks, Z-parameters, Y-parameters, Transmission line parameters, h-parameters, Inverse h-parameters, Inverse Transmission line parameters, Relationship between parameter sets, Parallel connection of two port networks, Cascading of two port networks, series connection of two port networks, problem solving including dependent sources also. (Text Books: 1,2, Reference Books: 1,3)

TEXT BOOKS:

- 1. Network Analysis ME Van Valkenburg, Prentice Hall of India, 3rd Edition, 2000.
- 2. Network Analysis by K.Satya Prasad and S Sivanagaraju, CengageLearning
- 3. Electric Circuit Analysis by Hayt and Kimmarle, TMH

REFERENCES:

- 1. Network lines and Fields by John. D. Ryder 2nd edition, Asia publishinghouse.
- 2. Basic Circuit Analysis by DR Cunninghan, Jaico Publishers.

3.Network Analysis and Filter Design by Chadha, UmeshPublications.

COURSE OBJECTIVES:

- To understand the basic concepts on RLC circuits.
- To know the behavior of the steady states and transients states in RLCcircuits.
- To know the basic Laplace transforms techniques in periods' waveforms.
- To understand the two port networkparameters.
- To understand the properties of LC networks and filters.

COURSE OUTCOME:

- gain the knowledge on basic networkelements.
- will analyze the RLC circuits behavior indetailed.
- analyze the performance of periodicwaveforms.
- gain the knowledge in characteristics of two port network parameters (Z,Y,ABCD,h &g).
- analyze the filter design concepts in real worldapplications.

I Year - II Semester		L	T P	C		
		3	0	0	3	
BASIC ELECTRICAL ENGINEERING						

Preamble:

This course covers various topics related to principle of operation and performance of various electrical machines.

Course Educational Objectives:

- To understand the principle of operation, constructional details and operational characteristics of DCgenerators.
- To understand the principle of operation, characteristics of DC motor. Methods of starting and speed control methods of DCmotors.
- To learn the constructional details, principle of operation and performance of transformers.
- To study the principle of operation, construction and details of synchronousmachines.
- To learn the principle of operation, constructional details, performance, torque slip characteristics and starting methods of 3-phase inductionmotors.

Unit I

DC Machines

Principle of operation of DC generator – emf equation – types of DC machines – torque equation of DC motor – applications – three point starter - losses and efficiency - swinburne's test - speed control methods – OCC of DC generator- Brake test on DC Shunt motor-numerical problems

Unit II

Transformers

Principle of operation of single phase transformer constructional features – EMF equation – Losses and efficiency of transformer- regulation of transformer – OC & SC tests predetermination of efficiency and regulations – Sumpner's test-Numerical Problems.

Unit III

Synchronous Generators

Principle of operation and construction of alternators – types of alternators Regulation of alternator by synchronous impedance method-EMF equation of three phase alternator

Synchronous Motors

Construction of three phase synchronous motor - operating principle –equivalent circuit of synchronous motor.

Unit IV

Induction Machine: Principle of operation and construction of three-phase induction motors – slip ring and squirrel cage motors – slip-torque characteristics – efficiency calculation – starting methods-Brake test on 3-Phase Induction Motor.

Unit V

Special Machines: Principle of operation and construction - single phase induction motor - shaded pole motors – capacitor motors and AC servomotor.

Course Outcomes:

- Able to explain the operation of DC generator and analyze the characteristics of DC generator.
- Able to explain the principle of operation of DC motor and analyze their characteristics. Acquire the skills to analyze the starting and speed control methods of DCmotors.
- Ability to analyze the performance and speed torque characteristics of a 3-phase induction motor and understand starting methods of 3-phase inductionmotor.
- Able to explain the operation of SynchronousMachines
- Capability to understand the operation of various specialmachines.

TEXT BOOKS:

- 1. Principles of Electrical Machines by V.K. Mehta & Rohit Mehta, S.Chandpublications
- 2. Theory & performance of Electrical Machines by J.B.Guptha, S.K.Kataria & Sons

REFERENCE BOOKS:

- 1.Basic Electrical Engineering by M.S.Naidu and S.Kamakshiah, TMH Publications
- 2.Fundamentals of Electrical Engineering by Rajendra Prasad, PHI Publications, 2nd edition
- 3. Basic Electrical Engineering by Nagsarkar, Sukhija, Oxford Publications, 2ndedition

I Year - II Semester		L T	Т	P	C
		0	0	2	1
ELECTRONIC WORKSHOP					

- I. Identification of components
- II. Laboratoryequipment
- III. Solderingpractice
- IV. PCBLayout
- V. Testing ofComponents
- VI. CRO

I. Identification of components:

- Resistors:- Types of Resistors, Value of Resistance using color code, DRBS.
- Capacitors:- Types of capacitors, value of capacitance using color code, DCBS.
- Inductors:- Types of Inductors,DLB
- Rheostats:- Types of Rheostats, Types of potentiometers, Relays.
- Switches:- Types of Switches.
- Cables: Types of Cables.
- Types of Instrumentsused.

Identification of active elements.

(Two Terminal, Three Terminal Devices)

- (SC diode, Zener diode, D.AC)
- Three Terminal Devices: BJT, UJT, SCR, FET, MOSFET, TRIAC.
- Digital and Analog ICs. (TO and Flat packages) IC regulatorstypes.
- Testing of above components using Multimetros.

II. LaboratoryEquipment:

A) Meters:-

- Types of Voltmeters, Types of Ammeters both Analog andDigital.
- Types of Multi meters (Analog &Digital)
- AVO Meters.
- FET inputVoltmeter.

B) Laboratory Function Generators and AudioOscillators.

- C) PowerSupplies.
- D) RFgenerators.

E) Different Types of Transformers. (Power, AF, RF, etc.)

III. Solderingpractice

Tools kit including soldering iron Tools Kit:

- Insulated noseplayer
- Insulated cuttingplayer
- Screw driverkit
- Electricaltester
- Soldering iron, Lead, Flex

IV. PCB layout andDesign.

Materials required, centimeter graph sheets, marker.

V. Testing of Components.

Active and Passive Components

VI. CRO

Acquaintance with CRO Measurements on CRO

I Year - II Semester		L	Т	P	С
i i cui ii șemeștei		0	0	3	1.5
	DACIC ELECTRICAL ENCINEEDING I				

BASIC ELECTRICAL ENGINEERING LAB

Learning Objectives:

- To plot the magnetizing characteristics of DC shunt generator and understand the mechanism ofself-excitation.
- To control the speed of DCmotors.
- To determine and predetermine the performance of DCmachines.
- To predetermine the efficiency and regulation of transformers and assess theirperformance.
- To analyse performance of three phase inductionmotor.
- To understand the significance of regulation of an alternators using synchronous impedance method.

Any ten of the following experiments are to be conducted

- 1. Magnetization characteristics of D.C. Shunt generator.
- 2. Speed control of D.C. shuntmotor.
- 3. Brake test on DC shuntmotor.
- 4. Swinburne's test on DCmachine
- 5. Load test on DC shuntgenerator
- 6. Load test on DC seriesgenerator.
- 7. Separation of losses iun DC Shuntmotor
- 8. OC & SC tests on single-phasetransformer
- 9. Sumpner's test on single phasetransformer
- 10. Brake test on 3-phase Induction motor.
- 11. Regulation of alternator by synchronous impedancemethod.

Learning Outcomes:

The student should be able to:

- Determine and predetermine the performance of DC machines and transformers.
- Control the DC shunt machines.
- Compute the performance of 1-phasetransformer.
- Perform tests on 3-phase induction motor and alternator to determine their performance characteristics.

I Year - II Semester	L	Т	Р	С
	0	0	3	1.5

APPLIED PHYSIC LAB (Any 10 of the following listed 15 experiments)

LIST OF EXPERIMENTS:

- 1. Determination of wavelength of a source-Diffraction Grating-Normalincidence.
- 2. Newton's rings Radius of Curvature of Plano ConvexLens.
- 3. Determination of thickness of a spacer using wedge film and parallel interferencefringes.
- 4. Magnetic field along the axis of a current carrying coil Stewart and Gee'sapparatus.
- 5. Energy Band gap of a Semiconductor p njunction.
- 6. Characteristics of Thermistor TemperatureCoefficients
- 7. Determination of dielectric constant by charging and dischargingmethod
- 8. Determination of resistivity of semiconductor by Four probemethod.
- 9. StudythevariationofBversusHbymagnetizingthemagneticmaterial(B-Hcurve). 10

Measurement of magnetic susceptibility by Gouy'smethod.

- 11. Dispersive power of diffractiongrating.
- 12. Resolving Power oftelescope
- 13. Resolving power ofgrating
- 14. Determination of Hall voltage and Hall coefficients of a given semiconductor using Hall effect.
- 15. Variation of dielectric constant withtemperature.

I Year - II Semester		L	Т	Р	С
i i cui ii șemeștei		0	0	2	1
	ΟΟΜΜΙΝΙΟΑΤΙΟΝ ΟΖΗ Ι ΟΙ Α Φ				

COMMUNICATION SKILLS LAB

UNIT I:

Oral Activity: JAM, Hypothetical Situations, Self/Peer Profile Common Errors in Pronunciation, Neutralising Accent

UNIT II:

Oral Activity: Telephonic Etiquette, Role Plays Poster Presentations

UNIT III:

Oral Activity: Oral Presentation skills, Public speaking Data Interpretation

UNIT IV:

Oral Activity: Group Discussions: Do's and Don'ts- Types, Modalities

UNIT V:

Oral Activity: Interview Skills: Preparatory Techniques, Frequently asked questions, Mock Interviews.

Pronunciation: Connected speech (Pausing, Tempo, Tone, Fluency etc.,)

References:

- 1. Infotech English, Maruthi Publications. (with Compact Disc)
- 2. Exercises in Spoken English Part 1,2,3,4, OUP and CIEFL.
- 3. English Pronunciation in use- Mark Hancock, Cambridge UniversityPress.
- 4. English Phonetics and Phonology-Peter Roach, Cambridge UniversityPress.
- 5. English Pronunciation in use- Mark Hewings, Cambridge UniversityPress.
- 6. English Pronunciation Dictionary- Daniel Jones, Cambridge UniversityPress.
- 7. English Phonetics for Indian Students- P. Bala Subramanian, Mac MillanPublications.
- 8. Technical Communication- Meenakshi Raman, Sangeeta Sharma, OxfordUniversity Press.
- 9. Technical Communication- Gajendrea Singh Chauhan, Smita Kashiramka, Cengage Publications.

I Year - II Semester	L	Т	Р	С
	0	0	2	1

ENGINEERING EXPLORATION PROJECT

COURSE OBJECTIVES:

- Build mindsets & foundations essential fordesigners
- Learn about the Human-Centered Design methodology and understand their real-world applications
- Use Design Thinking for problem solving methodology for investigating illdefined problems.
- Undergo several design challenges and work towards the final designchallenge

Apply Design Thinking on the following Streams to

- Project Stream 1: Electronics, Robotics, IOT and Sensors
- Project Stream 2: Computer Science and ITApplications
- Project Stream 3: Mechanical and Electricaltools
- Project Stream4: Eco-friendly solutions for waste management, infrastructure, safety, alternative energy sources, Agriculture, Environmental science and other fields of engineering.

HOW TO PURSUE THE PROJECT WORK?

- The first part will be learning-based-masking students to embrace the methodology by exploring all the phases of design thinking through the wallet/ bag challenge and podcasts.
- The second part will be more discussion-based and will focus on building some necessary skills as designers and learning about complementary material for human- centered design.
- The class will then divide into teams and they will be working with one another for about 2 3 weeks. These teams and design challenges will be the basis for the final project and final presentation to be presented.
- The teams start with **Design Challenge** and go through all the phases more in depth from coming up with the right question to empathizing to ideating to prototyping and to testing.
- Outside of class, students will also be gathering the requirements, identifying the challenges, usability, importanceetc
- At the end, Students are required to submit the final reports, and will be evaluated by the faculty.

ALANIA DA

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

TASKS TO BE DONE:

Task 1: Everyone is a Designer

• Understand class objectives & harness the designermindset

Task 2: The Wallet/Bag Challenge andPodcast

- Gain a quick introduction to the design thinking methodology
- Go through all stages of the methodology through a simple designchallenge
- Podcast: Observe, Listen and Engage with the surrounding environment and identify a designchallenge.

Task 3: Teams & Problems

- Start Design Challenge and learn about teams & problems through this
- Foster team collaboration, findinspiration from the environment and learn how to identifyproblems

Task 4: Empathizing

- Continue Design Challenge and learnempathy
- Learn techniques on how to empathize withusers
- Go to the field and interview people in their nvironments
- Submit ActivityCard

Task 5: Ideating

- Continue Design Challenge and learn how to brainstorm effectively
- Encourage exploration and foster spaces forbrainstorming
- Submit ActivityCard

Task 6:Prototyping

- Continue Design Challenge and learn how to create effective prototypes
- Build tangible models and use them as communicationtools
- Start giving constructive feedback to classmates andteammates
- Submit Activity Card

Task 7:Testing

- Finish Design Challenge and iterate prototypes and ideas through userfeedback
- Evolve ideas and prototypes through user feedback and constructivecriticism
- Get peer feedback on individual and groupperformance
- Submit ActivityCard

Task8:

Final Report Submission and Presentation

Note: The colleges may arrange for Guest Speakers from Various Design Fields: Graphic Design, Industrial Design, Architecture, Product Design, Organizational Design, etc to enrich the students with Design ThinkingConcept.

REFERENCES:

- 1. Tom Kelly, *The Art of Innovation: Lessons in Creativity From IDEO, America's Leading Design Firm* (Profile Books,2002)
- 2. Tim Brown, Change by Design: How Design Thinking Transforms Organizations and Inspires Innovation (HarperBusiness, 2009)
- 3. Jeanne Liedtka, Randy Salzman, and Daisy Azer, Design Thinking for the Greater Good: Innovation in the Social Sector (Columbia Business School Publishing,2017)

OTHER USEFUL DESIGN THINKING FRAMEWORKS AND METHODOLOGIES:

- Human-Centered Design Toolkit (IDEO);https://www.ideo.com/post/design-kit
- Design Thinking Boot Camp Bootleg (Stanford D-School); https://dschool.stanford.edu/resources/the-bootcamp-bootleg
- Collective Action Toolkit (frogdesign);https://www.frogdesign.com/wpcontent/ ouploads/2016/03/CAT_2.0_English.pdf
- Design Thinking for Educators (IDEO); <u>https://designthinkingforeducators.com/</u>

II Year - I Semester		L	Т	Р	С
		3	0	0	3
	ELECTRONIC DEVICES AND CIRCUI	TS			

Course Objectives:

The main objectives of this course are

- To learn and understand the basic concepts of semiconductor physics.
- Study the physical phenomena such as conduction, transport mechanism and electrical characteristics of different diodes.
- To learn and understand the application of diodes as rectifiers with their operation and characteristics with and without filters are discussed.
- Acquire knowledge about the principle of working and operation of Bipolar Junction Transistor and Field Effect Transistor and their characteristics.
- To learn and understandthe purpose of transistor biasing and itssignificance.
- Small signal equivalent circuit analysis of BJT and FET transistor amplifiers and compare different configurations.

UNIT-I:Review of Semi Conductor Physics: Hall effect, continuity equation, law of junction, Fermi Dirac function, Fermi level in intrinsic and extrinsic Semiconductors

Junction Diode Characteristics : energy band diagram of PN junction Diode, Open circuited pn junction, Biased p-n junction, p-n junction diode,current components in PN junction Diode, diode equation, V-I Characteristics, temperature dependence on V-I characteristics, Diode resistance, Diode capacitance.

UNIT-II:

Special Semiconductor Devices: Zener Diode, Breakdown mechanisms, Zener diode applications, LED, Varactor Diode, Photodiode, Tunnel Diode, UJT, PN-PN Diode, SCR. Construction, operation and V-I characteristics.

Rectifiers and Filters: Basic Rectifier setup, half wave rectifier, full wave rectifier, bridge rectifier, derivations of characteristics of rectifiers, rectifier circuits-operation, input and output waveforms, Filters, Inductor filter(Series inductor), Capacitor filter(Stunt inductor), π -Filter, comparison of various filter circuits in terms of ripple factors.

UNIT- III: Transistor Characteristics:

BJT: Junction transistor, transistor current components, transistor equation, transistor configurations, transistor asan amplifier, characteristics of transistor in Common Base, Common Emitter and Common Collector configurations, Ebers-Moll model of a transistor, punch through/ reach through, Photo transistor, typical transistor junction voltage values.

FET: FET types, construction, operation, characteristics μ , g_m , r_d parameters, MOSFET-types, construction, operation, characteristics, comparison between JFET and MOSFET.

ALWERRUTE THE STORES

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UNIT- IV: Transistor Biasing and Thermal Stabilization : Need for biasing, operating point, load line analysis,BJT biasing- methods, basic stability, fixed bias, collector to base bias, self bias, Stabilization against variations in V_{BE}, Ic, and β , Stability factors, (S,S',S''), Bias compensation, Thermal runaway, Thermalstability.

FET Biasing- methods and stabilization.

UNIT- V: Small Signal Low Frequency Transistor Amplifier Models:

BJT: Two port network, Transistor hybrid model, determination of h-parameters, conversion of h-parameters, generalized analysis of transistor amplifier model using h-parameters, Analysis of CB, CE and CC amplifiers using exact and approximate analysis, Comparison of transistor amplifiers.

FET: Generalized analysis of small signal model, Analysis of CG, CS and CD amplifiers, comparison of FETamplifiers.

Text Books:

- 1. Electronic Devices and Circuits- J. Millman, C. Halkias, Tata Mc-Graw Hill, SecondEdition,2007
- 2. Electronic Devices and Circuits-K. Lal Kishore, BS Publications, FourthEdition, 2016.
- 3.Electronics devices & circuit theory- Robert L.Boylestad andLouiNashelsky, Pearson/Prentice hall, tenth edition,2009

References:

- 1. Integrated Electronics-J. Millman, C. Halkias, Tata Mc-Graw Hill, SecondEdition, 2009
- 2. Electronic Devices and Integrated Circuits B.P. Singh, Rekha, Pearson publications,
- 3.Electronic Devices and Circuits-Salivahanan, Kumar, Vallavaraj, Tata Mc-Graw Hill, 4thEdition,2008.

Course Outcomes:

At the end of this course the student will be able to

- Apply the basic concepts of semiconductor physics.
- Understand the formation of p-n junction and how it can be used as a p-n junction as diode in different modes of operation.
- Know the construction, working principle of rectifiers with and without filters with relevant expressions and necessary comparisons.
- Understand the construction, principle of operation of transistors, BJT and FET with their V-I characteristics in different configurations.
- Know the need of transistor biasing, various biasing techniques for BJT and FET and stabilization concepts with necessary expressions.
- Perform the analysis of small signal low frequency transistor amplifier circuits using BJT and FET in different configurations.

II Year - I Semester	L	Τ	Р	С
	3	0	0	3
SWITCHING THEORY a	d LOGIC DESIGN			

Course Objectives:

- To solve a typical number base conversion and analyze new error coding techniques.
- Theorems and functions of Boolean algebra and behavior of logic gates.
- To optimize logic gates for digital circuits using various techniques.
- Boolean function simplification using Karnaugh maps and Quine-McCluskey methods.
- To understand concepts of combinational circuits.
- To develop advanced sequential circuits.

UNIT – I

REVIEW OF NUMBER SYSTEMS & CODES:

Representation of numbers of different radix, conversation from one radix to another radix, r-1's compliments and r's compliments of signed members.Gray code ,4 bit codes; BCD, Excess-3, 2421, 84-2-1 code etc. Error detection & correction codes: parity checking, even parity, odd parity, Hamming code.

BOOLEAN THEOREMS AND LOGIC OPERATIONS:

Boolean theorems, principle of complementation & duality, De-morgan theorems.Logic operations ; Basic logic operations -NOT, OR, AND, Universal Logic operations, EX-OR, EX-NOR operations.Standard SOP and POS Forms, NAND-NAND and NOR-NOR realizations, Realization of three level logic circuits. Study the pin diagram and obtain truth table for the following relevant ICs 7400,7402,7404,7408,7432,7486.

UNIT – II

MINIMIZATION TECHNIQUES:

Minimization and realization of switching functions usingBoolean theorems, K-Map (up to 6 variables)and tabular method(Quine-mccluskey method) with only four variables and single function.

COMBINATIONAL LOGIC CIRCUITS DESIGN:

Design of Half adder, full adder, half subtractor, full subtractor, applications of full adders; 4-bit adder-subtractor circuit, BCD adder circuit, Excess 3 adder circuit and carry look-a-head adder circuit, Design code converts using Karnaugh method and draw the complete circuit diagrams.

ALANIA SALANA

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UNIT – III

COMBINATIONAL LOGIC CIRCUITS DESIGN USING MSI &LSI :

Design of encoder ,decoder, multiplexer and de-multiplexers, Implementation of higher order circuits using lower order circuits . Realization of Boolean functions using decoders and multiplexers.Design of Priority encoder, 4-bit digital comparator and seven segment decoder. . Study the relevant ICs pin diagrams and their functions 7442,7447,7485,74154.

INTRODUCTION OF PLD's :

PLDs:PROM, PAL, PLA -Basics structures, realization of Boolean functions, Programming table.

UNIT – IV

SEQUENTIAL CIRCUITS I:

Classification of sequential circuits (synchronous and asynchronous), operation of NAND & NOR Latches and flip-flops; truth tables and excitation tables of RS flip-flop, JK flip-flop, T flip-flop, D flip-flop with reset and clear terminals. Conversion from one flip-flop toanother flip-flop. Design of 5ripple counters, design of synchronous counters, Johnson counter, ring counter. Design of registers - Buffer register, control buffer register, shift register, bi-directional shift register, universal shift, register.

Study the following relevant ICs and their relevant functions 7474,7475,7476,7490,7493,74121.

UNIT – V

SEQUENTIAL CIRCUITS II :

Finite state machine; state diagrams, state tables, reduction of state tables. Analysis of clocked sequential circuits Mealy to Moore conversion and vice-versa. Realization of sequence generator, Design of Clocked Sequential Circuit to detect the given sequence (with overlapping or without overlapping).

TEXT BOOKS:

- 1. Switching and finite automata theory Zvi.KOHAVI,Niraj.K.Jha 3rdEdition,Cambridge UniversityPress,2009
- 2. Digital Design by M.MorrisMano, Michael D Ciletti, 4th edition PHIpublication, 2008
- 3. Switching theory and logic design by Hill and Peterson,Mc-Graw Hill TMH edition, 2012.

ALANIA STREET

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

REFERENCES:

- 1. Fundamentalsof Logic Design by Charles H. Roth Jr, JaicoPublishers, 2006
- 2. Digital electronics by R S Sedha.S.Chand & companylimited,2010
- 3. Switching Theory and Logic Design by A. AnandKumar, PHI Learning pvtltd, 2016.
- 4. Digital logic applications and design by John M Yarbough, Cengage learning, 2006.
- 5. TTL 74-Series databook.

Course Outcomes:

- Classify different number systems and apply to generate variouscodes.
- Use the concept of Boolean algebra in minimization of switchingfunctions
- Design different types of combinational logiccircuits.
- Apply knowledge of flip-flops in designing of Registers and counters
- The operation and design methodology for synchronous sequential circuits and algorithmic statemachines.
- Produce innovative designs by modifying the traditional designtechniques.

II Year - I Semester		L	Т	P	С
		3	0	0	3
	SIGNALS and SYSTEMS				

Course Objectives:

The main objectives of this course are given below:

- To study about signals and systems.
- To analyze the spectral characteristics of signal using Fourier series and Fouriertransforms.
- To understand the characteristics of systems.
- To introduce the concept of samplingprocess
- To know various transform techniques to analyze the signals and systems.

UNIT- I: INTRODUCTION: Definition of Signals and Systems, Classification of Signals, Classification of Systems, Operations on signals: time-shifting, time-scaling, amplitude-shifting, amplitude-scaling. Problems on classification and characteristics of Signals and Systems. Complex exponential and sinusoidal signals, Singularity functions and related functions: impulse function, step function signum function and ramp function. Analogy between vectors and signals, orthogonal signal space, Signal approximation using orthogonal functions, Mean square error, closed or complete set of orthogonal functions, Orthogonality in complex functions. Related Problems.

UNIT -II: FOURIER SERIES AND FOURIER TRANSFORM:

Fourier series representation of continuous time periodic signals, properties of Fourier series, Dirichlet's conditions, Trigonometric Fourier series and Exponential Fourier series, Relation between Trigonometric and Exponential Fourier series, Complex Fourier spectrum. Deriving Fourier transform from Fourier series, Fourier transform of arbitrary signal, Fourier transform of standard signals, Fourier transform of periodic signals, properties of Fourier transforms, Fourier transforms involving impulse function and Signum function. Introduction to Hilbert Transform.RelatedProblems.

UNIT-III: ANALYSIS OF LINEAR SYSTEMS: Introduction, Linear system, impulse response, Response of a linear system, Linear time invariant (LTI) system, Linear time variant (LTV) system, Concept of convolution in time domain and frequency domain, Graphical representation of convolution, Transfer function of a LTI system, Related problems. Filter characteristics of linear systems. Distortion less transmission through a system, Signal bandwidth, system bandwidth, Ideal LPF, HPF and BPF characteristics, Causality and Poly-Wiener criterion for physical realization, relationship between bandwidth and rise time.

ALANIA DA

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UNIT –IV:

CORRELATION: Auto-correlation and cross-correlation of functions, properties of correlation function, Energy density spectrum, Parseval's theorem, Power density spectrum, Relation between Convolution and correlation, Detection of periodic signals in the presence of noise by correlation, Extraction of signal from noise by filtering.

SAMPLING THEOREM : Graphical and analytical proof for Band Limited Signals, impulse sampling, Natural and Flat top Sampling, Reconstruction of signal from its samples, effect of under sampling – Aliasing, Introduction to Band Pass sampling, Related problems.

UNIT –V:

LAPLACE TRANSFORMS: Introduction, Concept of region of convergence (ROC) for Laplace transforms, constraints on ROC for various classes of signals, Properties of L.T's, Inverse Laplace transform, Relation between L.T's, and F.T. of a signal. Laplace transform of certain signals using waveformsynthesis.

Z-TRANSFORMS: Concept of Z- Transform of a discrete sequence. Region of convergence in Z-Transform, constraints on ROC for various classes of signals, Inverse Z-transform, properties of Z-transforms. Distinction between Laplace, Fourier and Z transforms.

TEXT BOOKS:

- 1. Signals, Systems & Communications B.P. Lathi, BS Publications, 2003.
- 2. Signals and Systems A.V. Oppenheim, A.S. Willsky and S.H. Nawab, PHI,2nd Edn,1997
- 3. Signals & Systems Simon Haykin and Van Veen, Wiley, 2ndEdition, 2007

REFERENCE BOOKS:

- 1. Principles of Linear Systems and Signals BP Lathi, Oxford University Press, 2015
- 2. Signals and Systems T K Rawat, Oxford University press, 2011

Course Outcomes: At the end of this course the student will able to:

- Differentiate the various classifications of signals and systems
- Analyze the frequency domain representation of signals using Fourierconcepts
- Classify the systems based on their properties and determine the response of LTI Systems.
- Know the sampling process and various types of samplingtechniques.
- Apply Laplace and z-transforms to analyze signals and Systems (continuous &discrete).

II Year - I Semester	L	Т	P	С
li i cui i schiester	3	0	0	3

RANDOM VARIABLES and STOCHASTIC PROCESSES

Course Objectives:

- To give students an introduction to elementary probability theory, in preparation to learn the concepts of statistical analysis, random variables and stochasticprocesses.
- To mathematically model the random phenomena with the help of probabilitytheory Concepts.
- To introduce the important concepts of random variables and stochasticprocesses.
- To analyze the LTI systems with stationary random process asinput.

UNIT I

THE RANDOM VARIABLE: Introduction, Review of Probability Theory, Definition of a Random Variable, Conditions for a Function to be a Random Variable, Discrete, Continuous and Mixed Random Variables, Distribution and Density functions, Properties, Binomial, Poisson, Uniform, Gaussian, Exponential, Rayleigh, Conditional Distribution, Conditional Density, Properties.

UNIT II

OPERATION ON ONE RANDOM VARIABLE - EXPECTATIONS: Introduction,

Expected Value of a Random Variable, Function of a Random Variable, Moments about the Origin, Central Moments, Variance and Skew, Chebychev's Inequality, Characteristic Function, Moment Generating Function, Transformations of a Random Variable: Monotonic Transformations for a Continuous Random Variable, Non-monotonic Transformations of Continuous Random Variable.

UNIT III

MULTIPLE RANDOM VARIABLES: Vector Random Variables, Joint Distribution Function, Properties of Joint Distribution, Marginal Distribution Functions, Conditional Distribution and Density, Statistical Independence, Sum of Two Random Variables, Sum of Several Random Variables, Central Limit Theorem: Unequal Distribution, EqualDistributions.

OPERATIONS ON MULTIPLE RANDOM VARIABLES: Joint Moments about the Origin, Joint Central Moments, Joint Characteristic Functions, Jointly Gaussian Random Variables: Two Random Variables case, N Random Variables case, Properties, Transformations of Multiple Random Variables, Linear Transformations of Gaussian Random Variables.

UNIT IV

RANDOM PROCESSES – TEMPORAL CHARACTERISTICS: The RandomProcess Concept, Classification of Processes, Deterministic and Nondeterministic Processes, Distribution and Density Functions, Concept of Stationarity and Statistical Independence. First-Order Stationary Processes, Second-order and Wide-Sense Stationarity, Nth-order and Strict-Sense

Stationarity, Time Averages and Ergodicity, Autocorrelation Function and its Properties, Cross-Correlation Function and its Properties, Covariance Functions, Gaussian Random Processes, Poisson Random Process.

UNIT V

RANDOM PROCESSES - SPECTRAL CHARACTERISTICS: The PowerDensity Spectrum: Properties, Relationship between Power Density Spectrum and Autocorrelation Function, The Cross-Power Density Spectrum, Properties, Relationship between Cross-Power Density Spectrum and Cross-Correlation Function.

LINEAR SYSTEMS WITH RANDOM INPUTS: Random Signal Response of Linear Systems: System Response – Convolution, Mean and Mean-squared Value of System Response, Autocorrelation Function of Response, Cross-Correlation Functions of Input and Output, Spectral Characteristics of System Response: Power Density Spectrum of Response, Cross-Power Density Spectra of Input and Output, Band pass, Band-Limited and Narrowband Processes, Properties.

TEXT BOOKS:

- 1. Probability, Random Variables & Random Signal Principles, Peyton Z. Peebles, TMH, 4th Edition, 2001.
- 2. Probability, Random Variables and Stochastic Processes, Athanasios Papoulisand S.Unnikrisha, PHI, 4th Edition,2002.
- 3. Probability and Random Processes with Applications to Signal Processing, HenryStark and John W. Woods, Pearson Education, 3rdEdition,2001.

REFERANCE BOOKS:

- 1. Schaum's Outline of Probability, Random Variables, and Random Processes, 1997.
- 2. An Introduction to Random Signals and Communication Theory, B.P. Lathi, International Textbook, 1968.
- 3. Probability Theory and Random Processes, P. Ramesh Babu, McGrawHill,2015.

Course Outcomes:

After completion of the course, the student will be able to

- Mathematically model the random phenomena and solve simple probabilistic problems.
- Identify different types of random variables and compute statistical averages of these random variables.
- Characterize the random processes in the time and frequencydomains.
- Analyze the LTI systems with randominputs.

II Year - I Semester	L	Т	Р	С
ii i cui ii șemeșter	3	0	0	3

OBJECT ORIENTED PROGRAMMING THROUGH JAVA

Course Objectives:

This subject will help to improve

- the analytical skills of object oriented programming
- Overall development of problem solving and critical analysis.
- Formal introduction to Java programming language

Course Outcomes:

On successful completion of this course, the student should be able to:

- Show competence in the use of the Java programming language in the development of small to mediumsized application programs that demonstrate professionally acceptable coding and performance standard
- Illustrate the basic principles of the object-oriented programming
- Demonstrate an introductory understanding of graphical user interfaces, multithreaded programming, and event-driven programming.

<u>Unit I</u>

Introduction to Java : Basics of Java programming, Data types, Variables, Operators, Control structures including selection, Looping, Java methods, Overloading, Math class, Arrays in java.

Objects and Classes : Basics of objects and classes in java, Constructors, Finalizer, Visibility modifiers, Methods and objects, Inbuilt classes like String, Character, StringBuffer, File, this reference.

<u>Unit II</u>

Inheritance and Polymorphism : Inheritance in java, Super and sub class, Overriding, Object class, Polymorphism, Dynamic binding, Generic programming, Casting objects, Instance of operator, Abstract class, Interface in java, Package in java, UTIL package.

<u>Unit III</u>

Event and GUI programming : Event handling in java, Event types, Mouse and key events, GUI Basics, Panels, Frames, Layout Managers: Flow Layout, Border Layout, Grid Layout, GUI components like Buttons, Check Boxes, Radio Buttons, Labels, Text Fields, Text Areas, Combo Boxes, Lists, Scroll Bars, Sliders, Windows, Menus, Dialog Box, Applet and its life cycle, Introduction to swing, Creating a swing applet, swing controls and components.

<u>Unit IV</u>

I/O programming: Text and Binary I/O, Binary I/O classes, Object I/O, Random Access Files. Event driven model, handling events

<u>Unit V</u>

Multithreading in java: Thread life cycle and methods, Runnable interface, Thread synchronization, Exception handling with try-catch-finally, Collections in java, Introduction to JavaBeans and Network Programming.

Text Books:

- 1) Introduction to Java Programming (Comprehensive Version), Daniel Liang, Seventh Edition, Pearson.
- 2) Programming in Java, Sachin Malhotra & Saurabh Chaudhary, Oxford University Press.

Reference Books:

- 1) Murach's Beginning Java 2, Doug Lowe, Joel Murach and Andrea Steelman, SPD.
- 2) Core Java Volume-I Fundamentals, Eight Edition, Horstmann & Cornell, Pearson Education.
- 3) The Complete Reference, Java 2 (Fourth Edition), Herbert Schild, TMH.
- 4) Java Programming, D. S. Malik, Cengage Learning.

II Year - I Semester	L	Т	P	С
	3	0	0	3

MANAGERIAL ECONOMICS & FINANCIAL ANALYSIS

Course Objectives:

- The Learning objectives of this paper are to understand the concept and nature of Managerial Economics and its relationship with other disciplines and also to understand the Concept of Demand and Demandforecasting.
- To familiarize about the Production function, Input Output relationship, Cost-Output relationship and Cost-Volume-ProfitAnalysis.
- To understand the nature of markets, Methods of Pricing in the different market structures and to know the different forms of Business organization and the concept of Business Cycles.
- To learn different Accounting Systems, preparation of Financial Statement and uses of different tools for performanceevaluation.
- Finally, it is also to understand the concept of Capital, Capital Budgeting and the techniques used to evaluate Capital Budgetingproposals.

Unit-I

Introduction to Managerial Economics and demand Analysis:

Definition of Managerial Economics –Scope of Managerial Economics and its relationship with other subjects –Concept of Demand, Types of Demand, Determinants of Demand-Demand schedule, Demand curve, Law of Demand and its limitations- Elasticity of Demand, Types of Elasticity of Demand and Measurement-Demand forecasting and Methods of forecasting, Concept of Supply and Law of Supply.

Unit – II:

Theories of Production and Cost Analyses:

Theories of Production function- Law of Variable proportions-Isoquants and Isocosts and choice of least cost factor combination-Concepts of Returns to scale and Economies of scale-Different cost concepts: opportunity costs, explicit and implicit costs-Fixed costs, Variable Costs and Total costs –Cost –Volume-Profit analysis-Determination of Breakeven point(problems)-Managerial significance and limitations of Breakeven point.

Unit – III:

Introduction to Markets, Theories of the Firm & Pricing Policies:

Market Structures: Perfect Competition, Monopoly, Monopolistic competition and Oligopoly – Features – Price and Output Determination – Managerial Theories of firm: Marris and Williamson's models – other Methods of Pricing: Average cost pricing, Limit Pricing, Market Skimming Pricing, Internet Pricing: (Flat Rate Pricing, Usage sensitive pricing) and Priority Pricing, Business Cycles : Meaning andFeatures

 $-\ Phases of a Business Cycle. Features and Evaluation of Sole Trader, Partnership, Joint Stock Company$

- State/Public Enterprises and theirforms.

Unit – IV:

Introduction to Accounting & Financing Analysis:

Introduction to Double Entry System, Journal, Ledger, Trail Balance and Preparation of Final Accounts with adjustments – Preparation of Financial Statements-Analysis and Interpretation of Financial Statements-Ratio Analysis – Preparation of Funds flow and cash flow analysis (Problems)

Unit – V:

Capital and Capital Budgeting: Capital Budgeting: Meaning of Capital-Capitalization-Meaning of Capital Budgeting-Time value of money- Methods of appraising Project profitability: Traditional Methods(pay back period, accounting rate of return) and modern methods(Discounted cash flow method, Net Present Value method, Internal Rate of Return Method and Profitability Index)

TEXT BOOKS:

1. A R Aryasri, Managerial Economics and Financial Analysis, The McGraw – Hill companies.

REFERENCES:

- 1. Varshney R.L, K.L Maheswari, Managerial Economics, S. Chand & CompanyLtd,
- 2. JL Pappas and EF Brigham, Managerial Economics, Holt, R & W; New editionedition
- 3. N.P Srinivasn and M. SakthivelMurugan, Accounting for Management, S. Chand & CompanyLtd,
- 4. MaheswariS.N,AnIntroduction to Accountancy, Vikas Publishing House PvtLtd
- 5. I.M Pandey, Financial Management, Vikas Publishing House PvtLtd
- 6. V. Maheswari, Managerial Economics, S. Chand & CompanyLtd.

Course Outcomes:

- The Learner is equipped with the knowledge of estimating the Demand and demand elasticities for aproduct.
- The knowledge of understanding of the Input-Output-Cost relationships and estimation of the least cost combination of inputs.
- The pupil is also ready to understand the nature of different markets and Price Output determination under various market conditions and also to have the knowledge of different BusinessUnits.
- The Learner is able to prepare Financial Statements and the usage of various Accounting tools for Analysis.
- The Learner can able to evaluate various investment project proposals with the help of capital budgeting techniques for decisionmaking.

II Year - I Semester	L	T	P	C
	0	0	3	1.5

ELECTRONIC DEVICES AND CIRCUITS LAB

Note: The students are required to perform the experiment to obtain the V-I characteristics and to determine the relevant parameters from the obtained graphs.

Electronic Workshop Practice:

- 1. Identification, Specifications, Testing of R, L, C Components (ColourCodes), Potentiometers, Coils, Gang Condensers, Relays, BreadBoards.
- 2. Identification, Specifications and Testing of active devices, Diodes, BJTs, JFETs, LEDs, LCDs, SCR, UJT.
- 3. Soldering Practice- Simple circuits using active and passivecomponents.
- 4. Study and operation of Ammeters, Voltmeters, Transformers, Analog andDigital Multimeter, Function Generator, Regulated Power Supply andCRO.

List of Experiments: (Minimum of Ten Experiments has to be performed)

- P-N Junction DiodeCharacteristics Part A: Germanium Diode (Forward bias& Reverse bias) Part B: Silicon Diode (Forward Bias only)
- Zener DiodeCharacteristics
 Part A: V-ICharacteristics
 Part B: Zener Diode as Voltage Regulator
- Rectifiers (without and withc-filter) Part A: Half-waveRectifier Part B: Full-wave Rectifier
- 4. BJT Characteristics(CEConfiguration) Part A: InputCharacteristics Part B: Output Characteristics
- 5. FET Characteristics(CSConfiguration) Part A: DrainCharacteristics Part B: Transfer Characteristics
- 6. SCRCharacteristics
- 7. UJTCharacteristics
- 8. TransistorBiasing
- 9. CRO Operation and itsMeasurements
- 10. BJT-CEAmplifier
- 11. Emitter Follower-CCAmplifier
- 12. FET-CSAmplifier

Equipment required:

1. Regulated Powersupplies

- 2. Analog/Digital StorageOscilloscopes
- 3. Analog/Digital FunctionGenerators
- 4. DigitalMulti-meters
- 5. Decade RésistanceBoxes/Rheostats
- 6. Decade CapacitanceBoxes
- 7. Ammeters (Analog orDigital)
- 8. Voltmeters (Analog orDigital)
- 9. Active & Passive ElectronicComponents

II Year - I Semester	L	T	P	C
	0	0	3	1.5

SWITCHING THEORY and LOGIC DESIGN LAB

List of Experiments: (Minimum of Twelve Experiments has to be performed)

- Verification of truth tables of Logicgates Two input (i) OR (ii) AND (iii) NOR (iv) NAND (v) Exclusive OR (vi) Exclusive NOR
- 2. Design a simple combinational circuit with four variables and obtain minimal SOP expression and verify the truth table using Digital TrainerKit
- 3. Verification of functional table of 3 to 8 line Decoder /De-multiplexer
- 4. 4 variable logic function verification using 8 to 1 multiplexer.
- 5. Design full adder circuit and verify its functionaltable.
- 6. Verification of functional tablesof
 - (i) J K Edge triggered Flip –Flop
 - (ii) J K Master Slave Flip Flop

(iii)D Flip -Flop

- 7. Design a four bit ring counter using D Flip Flops / JK Flip Flop and verifyoutput
- 8. Design a four bit Johnson's counter using D Flip-Flops / JK Flip Flops and verifyoutput
- 9. Verify the operation of 4-bit Universal Shift Register for different Modes of operation.
- 10. Draw the circuit diagram of MOD-8 ripple counter and construct a circuit using T-Flip-Flops and Test it with a low frequency clock and Sketch the outputwaveforms.
- 11. Design MOD 8 synchronous counter using T Flip-Flop and verify the result and Sketch the outputwaveforms.
- 12. (a) Draw the circuit diagram of a single bit comparator and test theoutput(b) Construct 7 Segment Display Circuit Using Decoder and 7 Segment LED and testit.

ADD on Experiments:

- 1. Design BCD Adder Circuit and Test the Same using RelevantIC
- 2. Design Excess-3 to 9-Complement convertor using only four Full Adders and test the Circuit.
- 3. Design an Experimental model to demonstrate the operation of 74154 De-Multiplexer using LEDs foroutputs.

II Year-I Semester		L	Т	P	С
		3	0	0	0
	CONSTITUTION OF INDIA				

Course Objectives:

- To Enable the student to understand the importance of constitution
- To understand the structure of executive, legislature and judiciary
- To understand philosophy of fundamental rights andduties
- To understand the autonomous nature of constitutional bodies like Supreme Court and high court controller and auditor general of India and election commission ofIndia.
- To understand the central and state relation financial and administrative.

UNIT-I

Introduction to Indian Constitution: Constitution meaning of the term, Indian Constitution -Sources and constitutional history, Features - Citizenship, Preamble, Fundamental Rights and Duties, Directive Principles of State Policy.

Learning outcomes:

After completion of this unit student will

- Understand the concept of Indianconstitution
- Apply the knowledge on directive principle of statepolicy
- Analyze the History, features of Indianconstitution
- Evaluate Preamble Fundamental Rights and Duties

UNIT-II

Union Government and its Administration Structure of the Indian Union: Federalism, Centre-State relationship, President: Role, power and position, PM and Council of ministers, Cabinet and Central Secretariat, LokSabha, RajyaSabha, The Supreme Court and High Court: Powers andFunctions;

Learning outcomes:-After completion of this unit student will

- Understand the structure of Indiangovernment
- Differentiate between the state and centralgovernment
- Explain the role of President and PrimeMinister
- Know the Structure of supreme court and Highcourt

UNIT-III

State Government and its Administration Governor - Role and Position - CM and Council of ministers, State Secretariat: Organization, Structure and Functions

Learning outcomes:-After completion of this unit student will

- Understand the structure of stategovernment
- Analyze the role Governor and ChiefMinister
- Explain the role of stateSecretariat
- Differentiate between structure and functions of statesecretariat

UNIT-IV

A.Local Administration - District's Administration Head - Role and Importance, Municipalities -Mayor and role of Elected Representative - CEO of Municipal Corporation PachayatiRaj: Functions PRI: ZilaPanchayat, Elected officials and their roles, CEO ZilaPanchayat: Block level Organizational Hierarchy - (Different departments), Village level - Role of Elected and Appointed officials - Importance of grass root democracy

Learning outcomes:-After completion of this unit student will

- Understand the localAdministration
- Compare and contrast district administration role and importance
- Analyze the role of Myer and elected representatives of Municipalities
- Evaluate Zillapanchayat block levelorganisation

UNIT-V

Election Commission: Election Commission- Role of Chief Election Commissioner and Election Commissionerate State Election Commission:, Functions of Commissions for the welfare of SC/ST/OBC and women

Learning outcomes:-After completion of this unit student will

- Know the role of Election Commission applyknowledge
- Contrast and compare the role of Chief Election commissioner and Commissiononerate
- Analyze role of state electioncommission
- Evaluate various commissions of viz SC/ST/OBC andwomen

References:

- 1. Durga Das Basu, Introduction to the Constitution of India, Prentice Hall of India Pvt. Ltd.. NewDelhi
- 2. SubashKashyap, Indian Constitution, National BookTrust
- 3. J.A. Siwach, Dynamics of Indian Government & Politics
- 4. D.C. Gupta, Indian Government and Politics

- 5. H.M.Sreevai, Constitutional Law of India, 4th edition in 3 volumes (Universal Law Publication)
- 6. J.C. Johari, Indian Government and Politics Hans
- 7. J. Raj IndianGovernment andPolitics
- 8. M.V. Pylee, Indian Constitution Durga Das Basu, Human Rights in Constitutional Law, Prentice – Hall of India Pvt. Ltd.. NewDelhi
- Noorani, A.G., (South Asia Human Rights Documentation Centre), Challenges to Civil Right), Challenges to Civil Rights Guarantees in India, Oxford University Press2012

resources:

- 1. nptel.ac.in/courses/109104074/8
- 2. nptel.ac.in/courses/109104045/
- 3. nptel.ac.in/courses/101104065/
- 4. www.hss.iitb.ac.in/en/lecture-details
- 5. www.iitb.ac.in/en/event/2nd-lecture-institute-lecture-series-indian-constitution

Course Outcomes:

At the end of the semester/course, the student will be able to have a clear knowledge on the following:

- Understand historical background of the constitution making and its importance for building a democraticIndia.
- Understand the functioning of three wings of the government ie., executive, legislative and judiciary.
- Understand the value of the fundamental rights and duties for becoming good citizen of India.
- > Analyze the decentralization of power between central, state and localself-government.
- Apply the knowledge in strengthening of the constitutional institutions like CAG, Election Commission and UPSC for sustainingdemocracy.
 - 1. Know the sources, features and principles of IndianConstitution.
 - 2. Learn about Union Government, State government and itsadministration.
 - 3. Get acquainted with Local administration and PachayatiRaj.
 - 4. Be aware of basic concepts and developments of HumanRights.
 - 5. Gain knowledge on roles and functioning of ElectionCommission

II Year-II Semester		Т	P	C
	3	0	0	3

ELECTRONIC CIRCUIT ANALYSIS

Course Objectives:

The main objectives of this course are:

- To learn hybrid-pi parameters at high frequency and compare with low frequency parameters.
- Learn and understand the purpose of cascading of single stage amplifiers and derive the overall voltagegain.
- Analyze the effect of negative feedback on amplifier characteristics and derive the characteristics.
- Learn and understand the basic principle of oscillator circuits and perform the analysis of different oscillatorcircuits.
- Compare and analyze different Power amplifiers like Class A, Class B, Class C, Class AB and other types of amplifiers.
- Analyze different types of tuned amplifiercircuits.

UNIT-I Small Signal High Frequency Transistor Amplifier models:

BJT: Transistor at high frequencies, Hybrid- π common emitter transistor model, Hybrid π conductance, Hybrid π capacitances, validity of hybrid π model, determination of high-frequency parameters in terms of low-frequency parameters, CE short circuit current gain, current gain with resistive load, cut-off frequencies, frequency response and gain bandwidth product.

FET: Analysis of common Source and common drain Amplifier circuits at high frequencies.

UNIT-II

Multistage Amplifiers: Classification of amplifiers, methods of coupling, cascaded transistor amplifier and its analysis, analysis of two stage RC coupled amplifier, high input resistance transistor amplifier circuits and their analysis-Darlington pair amplifier, Cascode amplifier, Boot-strap emitter follower, Differential amplifier using BJT.

UNIT -III

Feedback Amplifiers : Feedback principle and concept, types of feedback, classification of amplifiers, feedback topologies, Characteristics of negative feedback amplifiers, Generalized analysis of feedback amplifiers, Performance comparison of feedback amplifiers, Method of analysis of feedback amplifiers.

Unit-IV

Oscillators: Oscillator principle, condition for oscillations, types of oscillators, RC-phase shift and Wien bridge oscillators with BJT and FET and their analysis, Generalized analysis of LC Oscillators, Hartley and Colpitt's oscillators using BJT, Frequency and amplitude stability of oscillators.

UNIT-V

Power Amplifiers: Classification of amplifiers(A to H), Class A power Amplifiers, Class B Push-pull amplifiers, Complementary symmetry push pull amplifier, Class AB power amplifier, Class-C power amplifier, Thermal stability and Heatsinks.

Tuned Amplifiers: Introduction, Q-Factor, small signal tuned amplifier, capacitance single tuned amplifier, double tuned amplifiers, , staggered tunedamplifiers

Text Books:

- 1. Integrated Electronics- J. Millman and C.C. Halkias, Tata McGraw-Hill, 1972.
- 2. Electronic Devices and Circuits Theory Robert L. Boylestad and LouisNashelsky, Pearson/Prentice Hall, Tenth Edition,2009.
- 3. Electronic Devices and Integrated Circuits B.P. Singh, Rekha, Pearson publications, 2006

References:

- 1. Electronic Circuit Analysis and Design Donald A. Neaman, McGrawHill,2010.
- 2. Microelectronic Circuits-Sedra A.S. and K.C. Smith, Oxford University Press, Sixth Edition, 2011.
- 3. Electronic Circuit Analysis-B.V.Rao, K.R.Rajeswari, P.C.R.Pantulu, K.B.R.Murthy, PearsonPublications.

Course Outcomes:

At the end of this course the student can able to

- Design and analysis of small signal high frequency transistor amplifier using BJT and FET.
- Designandanalysisofmultistageamplifiersusing BJTandFETandDifferential amplifier usingBJT.
- Derive the expressions for frequency of oscillation and condition for oscillation of RC and LC oscillators and their amplitude and frequency stability concept.
- Know the classification of the power and tuned amplifiers and their analysis with performance comparison.

II Year-II Semester		L	Т	Р	С
		3	0	0	3
	LINEAR CONTROL SYSTEMS				

Course objectives:

- To introduce the concepts of open loop and closed loop systems, mathematical models of mechanical and electrical systems, and concepts offeedback
- To study the characteristics of the given system in terms of the transfer function and introducing various approaches to reduce the overall system fornecessary analysis
- To develop the acquaintance in analyzing the system response in time-domain and frequency domain in terms of variousperformanceindices
- To analyze the system in terms of absolute stability and relative stability by different approaches
- To design different control systems for different applications as pergivenspecifications
- To introduce the concepts of state variable analysis, design and also the concepts of controllability and observability.

UNIT I

INTRODUCTION

Concepts of System, Control Systems: Open Loop and closed loop control systems and their differences. Different examples of control systems, Feed-Back Characteristics, Effects of feedback. Mathematical models, Differential equations, Impulse Response and transfer functions. Translational and Rotational mechanical systems

UNIT II

TRANSFER FUNCTION REPRESENTATION

Transfer Function of DC Servo motor - AC Servo motor- Synchro-transmitter and Receiver, Block diagram representation of systemsconsidering electrical systems as examples -Block diagram algebra– Representation by Signal flow graph - Reduction using mason'sgain formula.

TIME RESPONSEANALYSIS

Standard test signals - Time response of first order systems – CharacteristicEquation of Feedback control systems, Transient response of second ordersystems - Time domain specifications – Steady state response - Steady state errors and error constants.

UNIT III

STABILITY ANALYSIS IN S-DOMAIN

The concept of stability – Routh's stability criterion – qualitative stability and conditional stability – limitations of Routh's stability100

Root Locus Technique:

The root locus concept - construction of root loci-effects of adding poles and zeros to G(s)H(s) on the root loci.

UNIT IV

Frequency response analysis: Introduction, Correlation between time and frequency response, Polar Plots, Bode Plots, Nyquist StabilityCriterion

UNIT V

CLASSICAL CONTROL DESIGN TECHNIQUES

Compensation techniques – Lag, Lead, Lead-Lag Controllers design infrequency Domain, PID Controllers. State Space Analysis of ContinuousSystems Concepts of state, state variables and state model, derivation ofstate models from block diagrams, Diagonalization- Solving the Timeinvariant state Equations- State Transition Matrix and it's Properties –Concepts of Controllability and Observability.

TEXT BOOKS:

- 1. Automatic Control Systems 8th edition- by B. C. Kuo-John wiley and son's, 2003.
- 2. Control Systems Engineering by I. J. Nagrath and M. Gopal, New Age International(P) Limited, Publishers, 2nd edition, 2007
- 3. Modern Control Engineering-by Katsuhiko Ogata Pearson Publications, 5th edition,2015.

REFERENCE BOOKS:

- 1. Control Systems by A.Nagoorkani, RBA publications, 3 edition, 2017.
- 2. Control Systems by A.Anandkumar, PHI, 2 Edition, 2014.

Course Outcomes:

- This course introduces the concepts of feedback and its advantages to various controlsystems
- The performance metrics to design the control system in time-domain and frequency domain areintroduced.
- Control systems for various applications can be designed using time-domain and frequency domainanalysis.
- In addition to the conventional approach, the state space approach for the analysis of control systems is also introduced.

II Year-II Semester	L	Т	Р	С
II I cal-II Schester	3	0	0	3

ELECTROMAGNETIC WAVES and TRANSMISSION LINES

Course objectives:

The main objectives of this course are to understand

- Fundamentals of steady electric and magnetic fields using variouslaws
- Apply the concept of static and time varying Maxwell equations and power flow using pointingtheorem
- Wave characteristics in different media for normal and obliqueincidence
- Implement various concepts of transmission lines and impedancemeasurements

SYLLABUS:

Prerequisites: Understanding of Cartesian co-ordinates, spherical & cylindrical systems

UNIT I:

Transmission Lines - I : Types, Parameters, $T\&\pi$ Equivalent Circuits, Transmission Line Equations, Primary & Secondary Constants, Expressions for Characteristic Impedance, Propagation Constant, Phase and GroupVelocities, Infinite Line, Lossless lines, distortion less lines, Illustrative Problems.

UNIT II:

Transmission Lines – II: Input Impedance Relations, SC and OC Lines, Reflection Coefficient, VSWR. Low loss radio frequency lines and UHF Transmission lines, UHF Lines as Circuit Elements; ImpedanceTransformations, $\lambda/8$, $\lambda/4$ and $\lambda/2$ Lines –. Smith Chart – Construction and Applications, Quarter wave transformer,Single Stub Matching, Illustrative Problems.

UNIT III:

Review of Co-ordinate Systems, **Electrostatics:**, Coulomb's Law, Electric Field Intensity, Electric Flux Density, Gauss Law and Applications, Electric Potential, Maxwell's Two Equations for Electrostatic Fields, Energy Density, Illustrative Problems. Convection and Conduction Currents, Dielectric Constant, Poisson's and Laplace's Equations; Capacitance – Parallel Plate, Coaxial Capacitors, Illustrative Problems.

UNIT IV:

Magneto Statics : Biot-Savart Law, Ampere's Circuital Law and Applications, Magnetic Flux Density,Maxwell's Two Equations for Magnetostatic Fields, Magnetic Scalar and Vector Potentials, Forces due to MagneticFields, Ampere's Force Law, Inductances and Magnetic Energy. IllustrativeProblems.

Maxwell's Equations (Time Varying Fields): Faraday's Law and Transformer EMF, Inconsistency of Ampere'sLaw and Displacement Current Density, Maxwell's Equations in Different Final Forms and Word Statements.Conditions at a Boundary Surface.Illustrative Problems.

UNIT V:

EM Wave Characteristics : Wave Equations for Conducting and Perfect Dielectric Media,

ALANINADA

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UniformPlane Waves – Definition, All Relations Between E & H, Sinusoidal Variations, Wave Propagation in Lossydielectrics, lossless dielectrics, free space, wave propagation in good conductors, skin depth, Polarization & Types,Illustrative Problems.

Reflection and Refraction of Plane Waves – Normal and ObliqueIncidences, for both Perfect Conductor and Perfect Dielectrics, Brewster Angle, Critical Angle and Total InternalReflection, Surface Impedance. Poynting Vector and Poynting Theorem.Illustrative Problems.

TEXT BOOKS:

- 1. Elements of Electromagnetic Matthew N.O. Sadiku, Oxford Univ. Press, 3rd ed., 2001.
- 2. Electromagnetic Waves and Radiating Systems E.C. Jordan and K.G. Balmain, PHI,2nd Edition,2000.

REFERENCE BOOKS:

- 1. Electromagnetic Field Theory and Transmission Lines -GSN Raju, Pearson Education2006
- 2. Engineering Electromagnetic William H. Hayt Jr. and John A. Buck, TMH, 7th ed., 2006.
- 3. Electromagnetic Field Theory and Transmission Lines: G SasiBhushana Rao, WileyIndia 2013.
- 4. Networks, Linesand Fields John D. Ryder, Second Edition, Pearson Education, 2015.

Course Outcomes:

At the end of this course the student can able to

- Determine E and H using various laws and applications of electric & magneticfields
- Apply the Maxwell equations to analyze the time varying behavior of EMwaves
- Gain the knowledge in uniform plane wave concept and characteristics of uniformplane wave invariousmedia
- Calculate Brewster angle, critical angle and total internalreflection
- Derive andCalculate the expressions for input impedance of transmission lines,reflection coefficient, VSWR etc. using smithchart

II Year-II Semester		L	Т	Р	С
		3	0	0	3
	ANALOG COMMUNICATIONS				

Course Objectives:

Students undergoing this course are expected to

- Familiarize with the fundamentals of analog communication systems.
- Familiarize with various techniques for analog modulation and demodulation of signals.
- Distinguish the figure of merits of various analog modulationmethods.
- Develop the ability to classify and understand various functional blocks of radio transmitters and receivers.
- Familiarize with basic techniques for generating and demodulating various pulse modulated signals.

UNIT I

AMPLITUDE MODULATION : Introduction to communication system, Need for modulation, Frequency Division Multiplexing, Amplitude Modulation, Definition, Time domain and frequency domain description, single tone modulation, power relations in AM waves, Generation of AM waves, square law Modulator, Switching modulator, Detection of AM Waves; Square law detector, Envelope detector.

UNIT II

DSB & SSB MODULATION: Double side band suppressed carrier modulators, time domain and frequency domain description, Generation of DSBSC Waves, Balanced Modulators, Ring Modulator, Coherent detection of DSB-SC Modulated waves, COSTAS Loop. Frequency domain description, Frequency discrimination method for generation of AM SSB Modulated Wave, Time domain description, Phase discrimination method for generating AM SSB Modulated waves. Demodulation of SSB Waves, Vestigial side band modulation: Frequency description, Generation of VSB Modulated wave, Time domain description, Envelope detection of a VSB Wave pulse Carrier, Comparison of AM Techniques, Applications of different AM Systems,FDM.

UNIT III

ANGLE MODULATION: Basic concepts, Frequency Modulation: Single tone frequency modulation, Spectrum Analysis of Sinusoidal FM Wave, Narrow band FM, Wide band FM, Constant Average Power, Transmission bandwidth of FM Wave - Generation of FM Waves, Detection of FM Waves: Balanced Frequency discriminator, Zero crossing detector, Phase locked loop. Comparison of FM & AM.

UNIT IV

TRANSMITTERS & RECEIVERS: Radio Transmitter - Classification of Transmitter,

AM Transmitter, Effect of feedback on performance of AM Transmitter, FM Transmitter – Variable reactance type and phase modulated FM Transmitter, frequency stability in FM Transmitter. **Radio Receiver** - Receiver Types - Tuned radio frequency receiver, Super hetro dyne receiver, RF section and Characteristics - Frequency changing and tracking, Intermediate frequency, AGC, FM Receiver, Comparison with AM Receiver, Amplitude limiting. Communication Receivers, extensions of super heterodyne principle and additional circuits.

UNIT V

NOISE: Review of noise and noise sources, noise figure, Noise in Analog communication Systems, Noise in DSB& SSB System, Noise in AM System, Noise in Angle Modulation Systems, Threshold effect in Angle Modulation System, Pre-emphasis & de-emphasis **PULSE MODULATION:** Types of Pulse modulation, PAM (Single polarity, double polarity) PWM: Generation & demodulation of PWM, PPM, Generation and demodulation of PPM, Time Division Multiplexing, TDM Vs FDM

TEXT BOOKS:

- 1. Principles of Communication Systems H Taub & D. Schilling, Gautam Sahe, TMH, 3rd Edition, 2007.
- 2. Principles of Communication Systems Simon Haykin, John Wiley, 2nd Edition, 2007.
- 3. Modern Digital and Analog Communication Systems –B.P.Lathi,Zhi Ding,Hari Mohan Gupta,Oxford University Press,4th Edition,2017

REFERENCES:

- 1. Electronics & Communication System George Kennedy and Bernard Davis, TMH 2004.
- 2. Communication Systems- R.P. Singh, SP Sapre, Second Edition TMH,2007.
- 3. Electronic Communication systems Tomasi, Pearson, fourth Edition, 2007.

Course Outcomes:

After undergoing the course, students will be able to

- Differentiate various Analog modulation and demodulationschemes and their spectralcharacteristics
- Analyze noise characteristics of various analog modulationmethods
- Analyze various functional blocks of radio transmitters and receivers
- Design simple analog systems for various modulationtechniques.

II Year-II Semester	L	Т	Р	С
II I cal-II Semester	3	0	0	3

COMPUTER ARCHITECTURE and ORGANIZATION

Course objectives:

- To understand the architecture of amodern computer with its various processing units. Also the Performance measurement of the computer system.
- To understand the memory management systemofcomputer.
- To Understand the various instructions, addressingmodes
- To Understand the concept of I/Oorganization

UNIT -I:

Basic Structure Of Computers: Functional unit, Basic Operational concepts, Bus structures, System Software, Performance, The history of computer development.

Machine Instruction and Programs:

Instruction and Instruction Sequencing: Register Transfer Notation, Assembly Language Notation, Basic Instruction Types,

UNIT -II:

Addressing Modes, Basic Input/output Operations, The role of Stacks and Queues in computer programming equation. Component of Instructions: Logic Instructions, shift and Rotate Instructions

Type of Instructions: Arithmetic and Logic Instructions, Branch Instructions, Addressing Modes, Input/output Operations

UNIT -III:

INPUT/OUTPUT ORGANIZATION: Accessing I/O Devices, Interrupts: Interrupt Hardware, Enabling and Disabling Interrupts, Handling Multiple Devices, Direct Memory Access,

Buses: Synchronous Bus, Asynchronous Bus, Interface Circuits, Standard I/O Interface: Peripheral Component Interconnect (PCI) Bus, Universal Serial Bus (USB)

UNIT -IV:

The MEMORY SYSTEMS: Basic memory circuits, Memory System Consideration, Read-Only Memory: ROM, PROM, EPROM, EEPROM, Flash Memory,

Cache Memories: Mapping Functions, INTERLEAVING

Secondary Storage: Magnetic Hard Disks, Optical Disks,

UNIT -V:

Processing Unit: Fundamental Concepts: Register Transfers, Performing an Arithmetic Or

Logic Operation, Fetching A Word From Memory, Execution of Complete Instruction, Hardwired Control,

Micro programmed Control: Microinstructions, Micro program Sequencing, Wide Branch Addressing Microinstructions with next –Address Field

TEXTBOOKS:

- 1. Computer Organization, Carl Hamacher, ZvonksVranesic, SafeaZaky, 5thEdition, McGrawHill,2011.
- 2. Computer Architecture and Organization, John P. Hayes ,3rdEdition, McGrawHill,2002.

REFERENCE BOOKS:

- 1. Computer Organization and Architecture William Stallings SixthEdition, Pearson/PHI
- 2. Structured Computer Organization Andrew S. Tanenbaum, 4th EditionPHI/Pearson, 2012.
- 3. Fundamentals or Computer Organization and Design, SivaraamaDandamudiSpringer Int.Edition,2003.
- 4. "Computer Organization and Design: The Hardware/Software Interface" by DavidA. Patterson and John L.Hennessy, 1998.
- 5. J.P. Hayes, "Computer Architecture and Organization", McGraw-Hill, 1998.

Course Outcomes:

- Students can understand the architecture of modern computer.
- They can analyze the Performance of a computer usingperformanceequation
- Understanding of differentinstructiontypes.
- Students can calculate the effective address of an operand byaddressingmodes
- They can understand how computer stores positive and negative numbers.
- Understand the concepts of I/O Organization and Memorysystems.

II Year-II Semester	L	Т	Р	С
II I cui II Schiester	3	0	0	3

MANAGEMENT and ORGANISATIONAL BEHAVIOUR

Course Objectives:

- To familiarize with the process of management, principles, leadership styles and basic concepts on Organization.
- To provide conceptual knowledge on functional management that is on Human resource management and Marketingmanagement.
- To provide basic insight into select contemporary management practices and Strategic Management.
- To learn theories of motivation and also deals with individual behavior, their personality and perception of individuals.
- To understand about organizations groups that affect the climate of anentire organizations which helps employees in stressmanagement.

Unit I

Introduction: Management and organizational concepts of management and organization-Nature and Importance of Management, Functions of Management, System approach to Management - Taylor's Scientific Management Theory, Fayol's Principles of Management, Leadership Styles, Social responsibilities of Management. Designing Organizational Structures: Basic concepts related to Organization - Departmentation and Decentralization, MBO, Process and concepts.

Unit II

Functional Management: Human Resource Management (HRM) Concepts of HRM, Basic functions of HR Manager: Manpower planning, Recruitment, Selection, Training and Development, Wage and Salary Administration Performance Appraisal, Grievance Handling and Welfare Administration, Job Evaluation and Merit Rating. - Marketing Management: Concepts of Marketing, Marketing mixelements and marketingstrategies.

Unit III

Strategic Management: Strategic Management and Contemporary Strategic Issues: Mission, Goals, Objectives, Policy, Strategy, Programmes, Elements of Corporate Planning Process, Environmental Scanning, Value Chain Analysis, SWOT Analysis, Steps in Strategy Formulation and implementation, Generic Strategy alternatives. Bench Marking and Balanced Score Card as Contemporary Business Strategies.

Unit IV

Individual Behavior: Perception-Perceptual process- Impression management- Personality development – Socialization – Attitude- Process- Formation- Positive attitude- Change – Learning – Learning organizations- Reinforcement Motivation – Process- Motives – Theories of

ALVERSITIER

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Motivation: Maslow's Theory of Human Needs, Douglas McGregor's Theory X and Theory Y, Herzberg's Two-Factor Theory of Motivation,

Unit V

Group Dynamics: Types of Groups, Stages of Group Development, Group Behaviour and Group Performance Factors, Organizational conflicts: Reasons for Conflicts, Consequences of Conflictsin

Organization, Types of Conflicts, Strategies for Managing Conflicts, Organizational Climate and Culture, Stress, Causes and effects, coping strategies of stress.

Reference Books:

- 1. Subba Rao P., Organizational Behaviour, Himalaya Publishing House. Mumbai.
- 2. Fred Luthans Organizational Behaviour, TMH, NewDelhi.
- 3. Robins, Stephen P., Fundamentals of Management, Pearson, India.
- 4. Kotler Philip & Keller Kevin Lane: Marketing Mangement 12/e, PHI,2007
- 5. Koontz & Weihrich: Essentials of Management, 6/e, TMH, 2007
- 6. Kanishka Bedi, Production and Operations Management, Oxford University Press, 2007.

Course Outcomes:

- After completion of the Course the student will acquire the knowledge on management functions, global leadership and organizationalstructure.
- Will familiarize with the concepts of functional management that is HRM and Marketing of new productdevelopments.
- The learner is able to think in strategically through contemporary managementpractices.
- The learner can develop positive attitude through personality development and can equip with motivationaltheories.
- The student can attain the group performance and grievance handling in managing the organizationalculture.

II Year-II Semester	I	L	Т	Р	С
II I cal-II Semester	0)	0	3	1.5
		-	·	-	

ELECTRONIC CIRCUIT ANALYSIS LAB

Note: The students are required to design the circuit and perform the simulation using Multisim/ Equivalent Industrial Standard Licensed simulation software tool. Further they are required to verify the result using necessary hardware equipment.

List of Experiments :(Minimum of Ten Experiments has to be performed)

- 1. Determination of f_T of a giventransistor.
- 2. Voltage-Series FeedbackAmplifier
- 3. Current-Shunt FeedbackAmplifier
- 4. RC Phase Shift/Wien BridgeOscillator
- 5. Hartley/ Colpitt'sOscillator
- 6. Two Stage RC CoupledAmplifier
- 7. Darlington PairAmplifier
- 8. Bootstrapped EmitterFollower
- 9. Class A Series-fed Power Amplifier
- 10. Transformer-coupled Class A PowerAmplifier
- 11. Class B Push-Pull PowerAmplifier
- 12. Complementary Symmetry Class B Push-Pull PowerAmplifier
- 13. Single Tuned VoltageAmplifier
- 14. Double Tuned VoltageAmplifier

Equipment required:

Software:

- i. Multisim/ Equivalent Industrial Standard Licensed simulation softwaretool.
- ii. Computer Systems with required specifications

Hardware Required:

- 1. Regulated Powersupplies
- 2. Analog/Digital StorageOscilloscopes
- 3. Analog/Digital FunctionGenerators
- 4. DigitalMultimeters
- 5. Decade RésistanceBoxes/Rheostats
- 6. Decade CapacitanceBoxes
- 7. Ammeters (Analog orDigital)
- 8. Voltmeters (Analog orDigital)
- 9. Active & Passive ElectronicComponents

II Year-II Semester	L	Т	Р	С
	0	0	3	1.5

ANALOG COMMUNICATIONS LAB

List of Experiments:

(Twelve experiments to be done- The students have to calculate the relevant parameters)-

- (a. Hardware, b.MATLABSimulink,c. MATLAB Communication toolbox)
 - A. Amplitude Modulation Modulation &Demodulation
 - B. AM DSB SC Modulation &Demodulation
 - C. Spectrum Analysis of Modulated signal usingSpectrumAnalyzer
 - D. DiodeDetector
 - E. Pre-emphasis&De-emphasis
 - F. Frequency Modulation Modulation&Demodulation
 - G. AGCCircuits
 - H. Verification of Sampling Theorem
 - I. Pulse Amplitude Modulation&Demodulation
 - J. PWM, PPM Modulation & Demodulation
 - K. PLL IC-565 as FM demodulator
 - L. Radioreceivercharacteristics
 - M. Radio Receiver/TV Receiver Demo kits orTrainees.

Note: All the above experiments are to be executed/completed using hardware boards and also to be simulated on Mat lab.

Equipment& Softwarerequired:

Software :

- i) Computer Systems withlatestspecifications
- ii) Connected inLAN(Optional)
- iii) Operating system(Windows/Linuxsoftware)
- iv) Simulations software (Simulink&MATLAB)

Equipment:

- 1.
 RPS
 0 30V

 2.
 CRO
 0 20 M Hz.
- 3. FunctionGenerators
- 0 -1 MHz
- 4. Components and Breadboards
- 5. Multimeters and othermeters
- 6. SpectrumAnalyzer

III Year - I Semester	L	Т	Р	С
III I cui I Semester	3	0	0	3

LINEAR INTEGRATED CIRCUITS and APPLICATIONS

Course objectives::

- To understand the basic operation & performance parameters of differential amplifiers.
- To understand & learn the measuring techniques of performance parameters of Op-Amp
- To learn the linear and non-linear applications of operational amplifiers.
- To understand the analysis & design of different types of active filters usingop-amps
- To learn the internal structure, operation and applications of different analogICs
- To Acquire skills required for designing and testing integrated circuits

UNIT I

Introduction: InternalBlock Diagram of various stages of Op-Amp and Roll of each Stage. Differential Amplifier using BJTs and With R_E DC and AC Analysis, Basic Current Mirror Circuit, Improved Version of current mirror circuit, current repeated circuit, Wilson current source.

OP-Amp Block Diagram (Symbolic Representation), Characteristics of Op-Amp, Ideal and Practical Op-Amp specifications, DC and AC Characteristics, Definitions of Input and Output Off-set voltage and currents slow rate, CMRR, PSRR.etc, Measurements of Op-Amp Parameters. Three-Terminal Voltage Regulators 78xx& 79xx Series, current Booster, adjustable voltage, Dual Power Supply with 78xx &79xx.

UNIT II

LINEAR and NON-LINEAR APPLICATIONS OF OP-AMPS: Inverting and Non-inverting amplifier, Integrator and differentiator, Difference amplifier, Instrumentation amplifier, ACamplifier, V to I, I to V converters, Buffers. Non- Linear function generation, Comparators, Multivibrators, Triangular and Square wave generators, Log and Anti log Amplifiers, Precision rectifiers.

UNITIII

ACTIVE FILTERS, ANALOG MULTIPLIERS AND MODULATORS: Design & Analysis of Butterworth active filters – 1st order, 2nd order LPF, HPF filters. Band pass, Band reject and all pass filters.

Four Quadrant Multiplier, IC 1496, Sample & Hold circuits.

UNIT IV

TIMERS & PHASE LOCKED LOOPS: Introduction to 555 timer, functional diagram, Monostable and Astable operations and applications, Schmitt Trigger; PLL - introduction, block schematic, principles and description of individual blocks, 565 PLL, Applications of PLL – frequency multiplication, frequency translation, AM, FM & FSK demodulators. Applications of VCO (566).

UNIT V

DIGITAL TO ANALOG AND ANALOG TO DIGITAL CONVERTERS: Introduction, basic DAC techniques, weighted resistor DAC, R-2R ladder DAC, inverted R-2R DAC, and IC 1408 DAC, Different types of ADCs – parallel Comparator type ADC, counter type ADC, successive approximation ADC and dual slope ADC.DAC and ADC Specifications, Specifications AD 574 (12 bit ADC).

TEXT BOOKS:

- 1. Linear Integrated Circuits D. Roy Choudhury, New Age International (p)Ltd, 2ndEdition,2003.
- 2. Op-Amps & Linear ICs Ramakanth A. Gayakwad, PHI, 1987.
- 3. Linear Integrated Circuits by Salivahan-3rd-Edition, McGrawHill,2018

REFERENCES:

- Operational Amplifiers & Linear Integrated Circuits –Sanjay Sharma ;SK Kataria& Sons; 2ndEdition,2010
- 2. Operational Amplifiers & Linear Integrated Circuits–R.F.Coughlin& FredrickDriscoll, PHI, 6th Edition,2000.
- 3. Operational Amplifiers & Linear ICs David A Bell, Oxford Uni. Press, 3rd Edition, 2011.
- 4. LinearIntegratedCircuits,byGaneshBabuT.RandSuseelaB.Scitech, 5th-Editon, 2014.

Course Outcomes:

- Design circuits using operational amplifiers for variousapplications.
- Analyze and design amplifiers and active filters usingOp-amp.
- Diagnose and trouble-shoot linear electronic circuits.
- Understand the gain-bandwidth concept and frequency response of the amplifier configurations.
- Understand thoroughly the operational amplifiers with linear integrated circuits.

III Year - I Semester	L	Т	Р	С
	3	0	0	3

MICROPROCESSOR AND MICROCONTROLLERS

Course objectives::

The main objectives of this course are

- To acquire knowledge on microprocessors and microcontrollers.
- To select processors based onrequirements.
- To acquire the knowledge on interfacing various peripherals, configure and develop programs to interfaceperipherals/sensors.
- To develop programs efficiently on ARM Cortex processors anddebug.

UNIT-I

Introduction: Basic Microprocessor architecture, Harvard and Von Neumann architectures with examples, Microprocessor Unit versus Microcontroller Unit, CISC and RISC architectures.

8086 Architecture: Main features, pin diagram/description, 8086 microprocessor family, internal architecture, bus interfacing unit, execution unit, interrupts and interrupt response, 8086 system timing, minimum mode and maximum modeconfiguration.

UNIT-II

8086 Programming: Program development steps, instructions, addressing modes, assembler directives, writing simple programs with an assembler, assembly language program development tools.

UNIT-III

8086 Interfacing: Semiconductor memories interfacing (RAM, ROM), Intel 8255 programmable peripheral interface, Interfacing switches and LEDS, Interfacing seven segment displays, software and hardware interrupt applications, Intel 8251 USART architecture and interfacing, Intel 8237a DMA controller, stepper motor, A/D and D/A converters, Need for 8259 programmable interruptcontrollers.

UNIT-IV

Intel 8051 MICROCONTROLLER

Architecture, Hardware concepts, Input/output ports and circuits, external memory, counters/timers, serial data input/output, interrupts.

Assembly language programming: Instructions, addressing modes, simple programs. Interfacing to 8051: A/D and D/A Convertors, Stepper motor interface, keyboard, LCD Interfacing, Traffic light control.

UNIT-V

ARM Architectures and Processors: ARM Architecture, ARM Processors Families, ARM Cortex-M Series Family, ARM Cortex-M3 Processor Functional Description, functions and interfaces.

ALARINADA Marina Sharana

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

Programmers Model – Modes of operation and execution, Instruction set summary, System address map, write buffer, bit-banding, processor core register summary, exceptions.

ARM Cortext-M3 programming – Software delay, Programming techniques, Loops, Stack and Stack pointer, subroutines and parameter passing, parallel I/O, Nested Vectored Interrupt Controller – functional description and NVIC programmers' model.

TEXTBOOKS:

- 1. Microprocessors and Interfacing Programming and Hardware by Douglas V Hall, SSSP Rao, Tata McGraw Hill Education Private Limited, 3rdEdition,1994.
- 2. The 8051 Microcontrollers and Embedded systems Using Assembly and C, Muhammad Ali Mazidi and Janice Gillespie Mazidi and Rollin D. McKinlay; Pearson 2-Edition, 2011.
- 3. The Definitive Guide to ARM Cortex-M3 and Cortex-M4 Processors by JosephYou.

REFERENCE BOOKS:

- 1. Embedded Systems Fundamentals with Arm Cortex-M based Microcontrollers: A Practical Approach in English, by Dr. Alexander G. Dean, Published by Arm Education Media,2017.
- 2. Cortex -M3 Technical ReferenceManual.

Course Outcomes:

At the end of this course the student will be able to:

- Understand the architecture of microprocessor/ microcontroller and theiroperation.
- Demonstrate programming skills in assembly language for processors andControllers.
- Analyze various interfacing techniques and apply them for the design of processor/Controller basedsystems.

III Year - I Semester		L	Т	Р	С
		3	0	0	3
	DIGITAL COMMUNICATIONS				

Course Objectives:

The student will be able to

- Understand pulse digital modulation systems such as PCM, DPCM andDM.
- Understand various digital modulation techniques and able to analyze various systems for their performance in terms of probability of error.
- Study the concepts of information theory and need for sourcecoding.
- Study Block codes, cyclic codes and convolutioncodes.

UNIT I

PULSE DIGITAL MODULATION: Elements of digital communication systems, advantages of digital communication systems, Elements of PCM: Sampling, Quantization & Coding, Quantization error, Companding in PCM systems. Differential PCM systems(DPCM). Delta modulation, its draw backs, adaptive delta modulation, comparison of PCM and DM systems, noise in PCM and DM systems.

UNIT II

DIGITAL MODULATION TECHNIQUES: Introduction, ASK, FSK, PSK, DPSK, DEPSK, QPSK, M-ary PSK, ASK, FSK, similarity of BFSK and BPSK.

UNIT III

DATA TRANSMISSION : Base band signal receiver, probability of error, the optimum filter, matched filter, probability of error using matched filter, coherent reception, non-coherent detection of FSK, calculation of error probability of ASK, BPSK, BFSK, QPSK.

UNIT IV

INFORMATION THEORY: Discrete messages, concept of amount of information and its properties. Average information, Entropy and its properties. Information rate, Mutual information and its properties.

SOURCE CODING: Introductions, Advantages, Shannon's theorem, Shanon-Fano coding, Huffman coding, efficiency calculations, channel capacity of discrete and analog Channels, capacity of a Gaussian channel, bandwidth –S/N trade off.

UNIT V

LINEAR BLOCK CODES: Introduction, Matrix description of Linear Block codes, Error detection and error correction capabilities of Linear block codes, Hamming codes, Binary cyclic codes, Algebraic structure, encoding, syndrome calculation, BCH Codes.

CONVOLUTION CODES: Introduction, encoding of convolution codes, time domain approach, transform domain approach. Graphical approach: state, tree and trellis diagram decoding using Viterbi algorithm.

TEXT BOOKS:

- 1. Digital communications Simon Haykin, John Wiley, 2005
- 2. Digital and Analog Communication Systems Sam Shanmugam, John Wiley, 2005.

REFERENCES:

- 1. Principles of Communication Systems H. Taub and D. Schilling, TMH, 2003
- 2. Digital Communications John Proakis, TMH, 1983. Communication Systems Analog& Digital Singh & Sapre, TMH,2004.
- Modern Digital and Analog Communication Systems –B.P.Lathi, Zhi Ding, Hari Mohan Gupta, Oxford University Press, 4th Edition, 2017

Course Outcomes:

After going through this course the student will be able to

- Analyze the performance of a Digital Communication System for probability of error and are able to design a digital communicationsystem.
- Analyze various source codingtechniques.
- Compute and analyze Block codes, cyclic codes and convolutioncodes.
- Design a coded communicationsystem.

III Year - I Semester	L	Т	Р	С
III I cal - I Semester	3	0	0	3

ELECTRONIC MEASUREMENTS & INSTRUMENTATION

Course Objectives:

- Learn and understand functioning of various measuring system and metrics for performance analysis.
- Acquire knowledge of principle of operation, working of differentelectronic
- Instruments viz. signal generators, signal analyzers, recorders and measuring equipment.
- To Compare various measuring bridges and their balancingconditions.
- Learn and understand the use of various measuring techniques for measurement of different physical parameters using different classes oftransducers.

UNIT I

Performance characteristics of instruments, Static characteristics; Accuracy, Resolution, Precision, Expected value, Error, Sensitivity.Dynamic Characteristics; speed of response, Fidelity, Lag and Dynamic error.Types of errors in measurements and their analysis. Design of multi-range AC, DC meters (voltmeter & ammeter) and ohmmeter(series & shunt type) using D'arsonval movement. True rms meter.

UNIT II

Specifications and designing aspects of Signal Generators - AFsine and square wave signal generators, Function Generators, Random noise generators, Arbitrary waveform generators. Wave Analyzers, Harmonic Distortion Analyzers, Spectrum Analyzers, Digital FourierAnalyzers.

UNIT III

Oscilloscopes- general purpose CROs; block diagram , functions and implementation of various blocks, specifications, various controls and their functions , types of probes used in CROs. Measurement of frequency and phase difference using Lissajous patterns.

Special purpose CROs; sampling oscilloscope, analog storage oscilloscope, digital storage oscilloscope.

UNIT IV

Bridge circuits- Wheat stone bridge, measurement of very low resistance, Measurement of inductance- Maxwell's bridge, Anderson bridge. Measurement of capacitance-Schearing Bridge.Wien Bridge, Errors and precautions in using bridges.

Q-meter; principle of operation, measurement methods and sources of errors.

Counters : principle of operation -modes of operation- totalizing mode, frequency mode and time period mode- sources of errors.

UNIT V

Transducers- active & passive transducers: Resistance, Capacitance, inductance; Strain gauges, LVDT, Piezo Electric transducers.

Measurement of physical parameters temperature, force, pressure, velocity, acceleration and displacement.

TEXTBOOKS:

- 1. Electronic instrumentation, second edition H.S. Kalsi, Tata McGrawHill,2004.
- 2. Modern Electronic Instrumentation and Measurement Techniques A.D. Helfrickand W.D. Cooper, PHI, 5th Edition, 2002.

REFERENCES:

- 1. Electronic Instrumentation & Measurements David A. Bell, PHI, 3rd Edition, 2013.
- Electrical and Electronic Measurement and Instrumentation A.K. Sawhney. Dhanpat Rai & Co, 12thEdition,2002.

Course Outcomes:

The student will be able to

- Select the instrument to be used based on therequirements.
- Understand and analyze different signal generators and analyzers.
- Understand the design of oscilloscopes for differentapplications.
- Design different transducers for measurement of different parameters.

III Year - I Semester]	L	Т	P	С
		3	0	0	3
	MATION THEORY & CODING	r			
	(Professional Elective 1)				

Course objectives:

The main objectives of this course are given below

- Understand the concept of Entropy and sourcecoding
- Understand the concept of channel and its capacity
- Encoding and Decoding of Digital DataStreams
- Be Aware of Compression and DecompressionTechniques
- Learn the Concepts of MultimediaCommunication

UNIT I INFORMATION THEORY AND SOURCE CODING

Uncertainty, information, entropy and its properties, entropy of binary memory less source and its extension to discrete memory less source, source coding theorem, data compression, prefix coding, Huffman coding, Lempel-Ziv coding, Source with memory and itsentropy.

UNIT II DISCRETE CHANNELS

Binary Symmetric Channel, mutual information & its properties, Channel capacity, channel coding theorem and its application to BSC, Shannon's theorem on channel capacity, capacity of a channel of infinite bandwidth, bandwidth - S/N trade off, practical communication systems in light of Shannon's theorem, Fading channel, channels withmemory.

UNIT III GROUPS, FIELDS AND LINEAR BLOCK CODES

Galois field and its construction in GF(2^m) and its basic properties, vector spaces and matrices in GF(2), Linear block codes, systematic codes and its encoding circuit, syndrome and error detection, minimum distance, error detecting and correcting capabilities of block code, decoding circuit, probability of undetected error for linear block code in BSC, Hamming code and their applications.

UNIT IV

CYCLIC CODES AND BCH CODES

Basic properties of Cyclic codes, Generator and parity check matrix of cyclic codes, encoding and decoding circuits, syndrome computation and error detection, cyclic Hamming codes, encoding and decoding of BCH codes, error location and correction.

UNIT V CONVOLUTIONALCODES

Introduction to convolution code, its construction and Viterbi algorithm for maximum likelihood decoding. Automatic repeat request strategies and their throughput efficiency considerations.

Text Books:

- 1. Sklar, Digital Communication, Pearson Education Asia, 2nd Edition,2001.
- Shu Lin and Costello, Error Control Coding: Fundamentals and Applications, 2ndEdition, Pearson,2004.

Reference Books:

- 1. Haykin Simon, Digital Communication, Wiley Publications, 2013.
- 2. Information theory and coding, Muralidhar Kulkarni, KS AShiva prakash,2015.
- 3. JS Chithode, Information theory and coding, Technical publishers, 1st Edition, 2014.

Course Outcomes:

At the end of this course the student will be able to

- Design an Application with Error-Controlcoding
- Use Compression and DecompressionTechniques
- Perform source coding and channelcoding

III Year - I Semester		L	Т	Р	С	
		3	0	0	3	
	DIGITAL SYSTEM DESIGN USING HDL					
	(Professional Elective 1)					

Course objectives:

The student will be able to

- Learn and understand the architectures of Field-programmable GateArrays
- Translate a software application into hardware logic for FPGAarchitectures
- Design synthesizable systems based on industry-standard codingmethods
- Build test benches and create data models to verify bit-true accuratedesigns.

UNIT-I

INTRODUCTION: Hardware Description Languages, FPGA Boards and Software Tools. Field-Programmable Gate Arrays: Transistor as a Switch, Logic Gates from Switches, FPGA Building Blocks, Layout of the Xilinx Artix-7 XC7A35T FPGA, Input/output Blocks, Configurable Logic Blocks, Interconnect Resources, Block RAM, DSP Slices, Clock Management, The XADC Block, High-Speed Serial I/O Transceivers, Peripheral Component Interconnect Express Interface, FPGA-Based Digital System Design Philosophy, How to Think While Using FPGAs, Advantages and Disadvantages of FPGAs, Usage Areas of FPGAs Introduction to Verilog: Verilog Fundamentals, Module Representation, Timing and Delays in Modelling, Hierarchical Module Representation, Test bench Formation in Verilog, Structure of a Verilog Test bench File, Displaying TestResults.

UNIT-II

VERILOG DATA TYPES AND OPERATORS: Data Types in Verilog, Net and Variable Data Types, Data Values, Naming a Net or Variable, Defining Constants and Parameters, Defining Vectors, Operators in Verilog, Arithmetic Operators, Concatenation and Replication Operators, Application on Data Types and Operators, FPGA Building Blocks Used in Data Types and Operators, Implementation Details of Vector Operations, Implementation Details of Arithmetic Operations.

UNIT-III

COMBINATIONAL CIRCUITS: Combinational Circuit Analysis, Logic Function Formation between Input and Output, Boolean Algebra, Gate-Level Minimization, Combinational Circuit Implementation, Truth Table-Based Implementation, Combinational Circuit Design.

COMBINATIONAL CIRCUIT BLOCKS: Adders in Verilog, Comparators in Verilog, Decoders in Verilog, Encoders in Verilog, Multiplexers in Verilog, Parity Generators and Checkers in Verilog, Applications on Combinational Circuits, Implementing the Home Alarm System, Implementing the Digital Safe System, Implementing the Car Park Occupied Slot Counting System, FPGA Building Blocks Used in Combinational Circuits.

DATA STORAGE ELEMENTS: Latches in Verilog, Flip-Flops in Verilog, Register, Memory, Read-Only Memory, ROM in Verilog, ROM Formation Using IP Blocks, Random Access

Memory, Application on Data Storage Elements, FPGA Building Blocks Used in Data Storage Elements.

UNIT-IV

SEQUENTIAL CIRCUITS: Sequential Circuit Analysis, State Table, State Diagram, State Representation in Verilog, Timing in Sequential Circuits, Synchronous Operation, Asynchronous Operation, Shift Register as a Sequential Circuit, Shift Registers in Verilog, Multiplication and Division Using Shift Registers, Counter as a Sequential Circuit, Synchronous Counter, Asynchronous Counter, Counters in Verilog, Frequency Division Using Counters, Sequential Circuit Design, Applications on Sequential Circuits.

UNIT-V

DIGITAL INTERFACING: Universal Asynchronous Receiver/Transmitter(UART) in Verilog, UART Applications, Serial Peripheral Interface (SPI) in Verilog, , SPI Application, Inter-Integrated Circuit (I²C) in Verilog, , I2C Application, Video Graphics Array (VGA) in Verilog, VGA Application, Universal Serial Bus (USB) Receiving Module in Verilog, USB Keyboard Application, Ethernet, FPGA Building Blocks Used in Digital Interfacing.

ADVANCED APPLICATIONS: Vending Machine, Digital Clock, Moving Wave via LEDs, Translator, Air Freshener Dispenser, Obstacle-Avoiding Tank, Intelligent Washing Machine, Non-Touch Paper Towel Dispenser, Car Parking Sensor System. Digital Table Tennis Game.

TEXT BOOKS:

- 1. CemUnsalan, BoraTar"DigitalSystemDesignwithFPGAImplementationUsing Verilog and VHDL" McGraw-Hill Education,2017
- 2. Design through Verilog HDL T.R. Padmanabhan and B. Bala Tripura Sundari, WSE, IEEE Press, 2004.

REFERENCES:

- 1. Advanced Digital Design with Verilog HDL Michael D. Ciletti, PHI,2005.
- 2. Fundamentals of Logic Design with Verilog Stephen. Brown and Zvonko Vranesic, TMH,2005.
- 3. A Verilog Primer J. Bhasker, BSP,2003.

Course Outcomes:

At the end of this course the student will be able to

- Understand the architecture of FPGAs, tools used in modelling of digitaldesign
- Analyze and design basic digital circuits with combinatorial and sequential logic circuits using VerilogHDL.
- Model complex digital systems at several levels of abstractions.
- Design real time applications such as vending machine and washing machinesetc.

III Year - I Semester		L	Т	Р	С
		3	0	0	3
	DATASTRUCTURES and ALGORITH	MS			
	(Professional Elective 1)				

Course objectives:

- Explain the systematic methods of efficiently organizing and accessing data in data structures and algorithms.
- Identify the properties and structural patterns in datastructures.
- Apply abstract data types to the design of datastructures.
- Analyze algorithms using a mathematical notation and experimentalstudies.
- Perform comparative analysis of the typical data structures and algorithms.
- Design and analyze recursive algorithms in datastructures

UNIT – I:

Data Structures Basics: Structure and Problem Solving, Data structures, Datastructure Operations, Algorithm: complexity, Time- spacetrade-off.

Linked List: Introduction, Linked lists, Representation of linked lists in Memory, traversing a linked list, Searching a linked list, Memory allocation and Garbage collection, insertion into linked list, Deletion from a linked list, Types of linkedlist.

UNIT – II:

Stack and Queue: Introduction, Array Representation of Stack, Linked List Representation of stack, Application of stack, Queue, Array Representation of Queue, Linked List Representation of Queue.

Trees: Definitions and Concepts, Operations on Binary Trees, Representation of binary tree, Conversion of General Trees to Binary Trees, Sequential and Other Representations of Trees, Tree Traversal.

UNIT – III:

Graphs: Matrix Representation of Graphs, List Structures, Other Representations of Graphs, Breadth First Search, Depth First Search, Spanning Trees. Directed Graphs Types of Directed **Graphs;** Binary Relation as a Digraph; Euler's Digraphs; Matrix Representation of Digraphs.

Applications of Graphs: Topological Sorting, Shortest-Path Algorithms – Weighted Shortest Paths – Dijkstra's Algorithm, Minimum spanning tree- Prim's Algorithm, Introduction to NP-Completeness.

UNIT – IV:

Searching and Sorting Techniques: Sorting Techniques – Bubblesort, Merge sort, Selection sort, Heap sort, Insertion Sort, Searching Techniques – SequentialSearching, Binary Searching, Search Trees.

Elementary Algorithms: Notation for Expressing Algorithms; Role and Notation for Comments; Example of an Algorithm; Problems and Instances; Characteristics of anAlgorithm;

Building Blocks of Algorithms; Procedure and Recursion – Procedure, Recursion; Outline of Algorithms; Specification Methods for Algorithms.

UNIT – V:

Mathematical Functions and Notations: Functions and Notations; Modular Arithmetic / Mod Function; Mathematical Expectation in Average Case Analysis; Efficiency of an Algorithm; Well Known Asymptotic Functions and Notations; Analysis of Algorithms – Simple Examples; Well Known Sorting Algorithms – Insertion sort, Bubble sort, Selection sort, Shell sort, Heap sort.

Divide and Conquer: Divide and Conquer Strategy; Binary Search; Max. And Min.; Merge sort; Quick sort. Greedy Method: Greedy Method Strategy; Optimistic Storage on Tapes; Knapsack Problem; Job Sequencing with Deadlines; Optimal Merge Pattern; Single Source ShortlistPaths.

Dynamic Programming: Dynamic Programming Strategy; Multistage Graphs; All Pair Shortest Paths; Travelling Salesman Problems. Backtracking Strategy, 8-Queens Problem, Sum of Subsets, Knapsack Problem.

TEXTBOOKS:

- 1. Data structures and Algorithm Analysis in C++, M. A. Weiss, 3rdEdition, Addison-Wesley, 2005.
- 2. Data structures in C++, Malik D.S, 2nd Edition, Cengage Learning,2009.
- 3. Data structures, Richard F.Gilberg and Behrouz A. Forouzan, 2nd Edition, Cengage Learning, 2007.

REFERENCE BOOKS:

- 1. Data Structures and Algorithms: Concepts Techniques and Applications, G. A. V. Pai, 1st Edition, McGraw HillEducation,2017.
- 2. Classic Data Structures, Debasis Samanta, 2nd Edition, PHI,2009.
- 3. Data structures, Seymour Lipschutz, 1st Edition, McGraw Hill Education, 2014.

Course Outcomes:

At the end of the course, students will be able to

- Demonstrate analytical comprehension of concepts such as abstract datatypes
- Analyze various generic programmingtechniques,
- Compare various sorting algorithms and perform their efficiencyanalysis.
- Demonstrate the ability to analyze, design, apply and use data structures and algorithms to solve engineering problems and evaluate their solutions.
- Demonstrate the ability of using generic principles for data representation & manipulation with a view for efficiency, maintainability, and code-reuse.

III Year - I Semester	L	Т	Р	С
	3	0	0	3

SOFT COMPUTING TECHNIQUES AND PYTHON PROGRAMMING (Professional Elective 1)

Course Objectives:

The objectives of this course include

- Teach an example of scripting and interpretative language and compare it with classical compiled programminglanguages
- Introduce the student to Python programmingfundamentals
- Expose students to application development and prototyping usingPython
- Learn to apply fundamental problem solvingtechnique
- Introduce the student to soft computing and genetic algorithms with relevantapplications

UNIT-I:

Introduction: History of Python, Need of Python Programming, how a program works, Variables, Operators in python, type conversions, expressions, if, if-elif-else, for, while, break, continue, pass.

UNIT – II:

Types, Data structures and functions: Types - Integers, Strings, Booleans; Lists - Operations, Slicing, Methods; Tuples, Sets, Dictionaries, Sequences. Comprehensions. Defining Functions, Calling Functions, Passing Arguments, types of arguments, Anonymous Functions, Scope of the Variables in a Function - Global and Local Variables, introduction to modules, creating modules, name spacing.

UNIT –**III: Design with classes and GUI** - Classes, 'self-variable', Methods, Constructor Method, Inheritance, Overriding Methods, Data hiding, polymorphism, working with instances. GUI Programming, using the tkinter module, display text with label widgets, widgets with frames, button widgets and info dialog boxes, getting input with entry widget, check buttons, radio buttons, Turtle Graphics.

UNIT – IV: Introduction to soft computing and fuzzy systems: Evolutionary computing, soft computing vs hard computing, soft computing methods, recent trends in soft computing, characteristics of soft computing, applications of soft computing, fuzzy sets, fuzzy relations, fuzzy logic, fuzzy rule-based systems

UNIT – V: Genetic Algorithms: Basic concepts, basic operators for genetic algorithms, crossover and mutation properties, genetic algorithm cycle, fitness function. Rough sets, rule induction and discernibility matrix, integration of soft computing techniques.

TEXT BOOKS :

- 1. Kenneth A. Lambert, The Fundamentals of Python: First Programs, 2011, Cengage learning.
- 2. Think Python First Edition, by Allen B. Downey, O'rielly publishing, 2001.
- 3. Python Programming, vamsi kurama, Pearson, 2017.
- 4. Soft Computing Advances and applications Jan 2015 by B.K. Tripathy and J.Anuradha CengageLearning

REFERENCE BOOKS:

- 1. Introduction to Computation and programming using python. John v. guttag, the MIT press, 2nd Edition,2016.
- 2. James Payne, beginning python using python 2.6 and python 3, Wrox publishing, 2010.

Course Outcomes:

- Understand and comprehend the basics of pythonprogramming.
- Demonstrate the principles of structured programming and be able to describe, design, implement, and test structured programs using currently accepted methodology.
- Explain the use of the built-in data structures list, sets, tuples and dictionary.
- Make use of functions and itsapplications.
- Identify real-world applications using oops, files and exceptionhandling provided by python.
- Formulate and implement a program to solve a real-world problem using GUI and Turtle graphics.
- Understand soft computing applications

III Year - I Semester	L	Т	P	С
	3	0	0	3
SIN	IATICAL MODELI	ING		
	lective 1)			

OBJECTIVE:

To introduce various system modelling and simulation techniques and highlight their applications in different areas. It includes modelling, design, simulation, planning, verification and validation.

UNIT – I:

Introduction to Simulation

When simulation is the appropriate tool and when it is not appropriate; Advantages and disadvantages of Simulation; Areas of application; Systems and system environment; Components of a system; Discrete and continuous systems; Model of a system; Types of Models; Discrete-Event System Simulation; Steps in a Simulation Study. The basics of Spreadsheet simulation, Simulation example: Simulation of queuing systems in a spreadsheet. General Principles, Simulation software: Concepts in Discrete-Event Simulation: The Event-Scheduling / Time-Advance Algorithm, World Views, Manual simulation Using Event Scheduling; List processing.

UNIT –II:

Mathematical Models

Statistical Models in simulation – Concepts, Discrete Distribution, Continuous Distribution, Poisson Process, Empirical Distributions, Queuing Models – Characteristics, Notation, Queuing Systems, Markovian Models, Generation of Pseudo Random numbers, Properties of random numbers, Techniques for generating random numbers, Testing random number generators, Generating Random-Variates, Inverse Transform technique, Acceptance- Rejection technique, Composition & Convolution Method

UNIT – III:

Analysis of Simulation Data

Input modelling: Data Collection; Identifying the distribution with data, Parameter estimation, Goodness of Fit Tests, fitting a non-stationary Poisson process, Selecting input models without data, Multivariate and Time-Series input models.

Estimation of Absolute Performance: Types of simulations with respect to output analysis; Stochastic nature of output data; Absolute measures of performance and their estimation; Output analysis for terminating simulations; Output analysis for steady-state simulations.

UNIT – IV:

Verification, Calibration, and Validation

Optimization: Model building, verification and validation; Verification of simulation models; Calibration and validation of models, Optimization via Simulation

Simulation of computer systems and case studies

Simulation tools, Model input, high level computer system simulation, comparison of systems via simulation, simulation programming techniques, development of simulationmodels.

UNIT – V:

Case Studies

City traffic simulation, Indoor air quality simulation of a building, machine health simulation (DC motorhealth)

TEXTBOOKS:

- 1. Discrete Event System Simulation, Jerry Banks and John S. Carson II, 5thEdition, Pearson,2010.
- 2. Simulation Modelling and Analysis, Averill M. Law, 4thEdition, McGraw Hill,2007.
- 3. Introduction to probability models, Sheldon M. Ross, 7th Edition, Academic Press, 2000.

REFERENCE BOOKS:

- 1. Simulation, Sheldon M. Ross, 5th Edition, Elsevier, 2012.
- 2. System Modelling and Simulation An Introduction, Frank L. Severance, Wiley, 2001.
- 3. System Simulation, Geoffrey and Gordon, 2nd Edition, PHI,2002.
- 4. Handbook of simulation: Principles, Methodology, Advances, Applications and Practice, Jerry Banks, 1st Edition, Wiley,1998.

Course Outcomes:

At the end of the course, students will be able to

- Solve real world problems which cannot be solved strictly by mathematicalapproaches.
- Understand the principles within mathematic modelling of materialsscience.
- Demonstrate the ability describe the mathematical components in mechanical and thermal analyses.
- beable to describe the conditions in numerical code for solving stress loadingproblems.

III Year - I Semester	L	Т	Р	С
III I cai - I Semester	0	0	3	1.5

LINEAR INTEGRATED CIRCUITS and APPLICATIONS LAB

List of Experiments: (Minimum Twelve Experiments to be conducted)

- 1. Study of OP AMPs IC 741, IC 555, IC 565, IC 566, IC 1496 functioning, parameters and Specifications.
- 2. OP AMP Applications Adder, Subtractor, ComparatorCircuits.
- 3. A. Integrator and DifferentiatorCircuits.
- 4. B. Waveform Generator using single OP-AMP with variable dutycycle
- 5. Active Filter Applications LPF, HPF (firstorder)
- 6. Active Filter Applications BPF, Band Reject (Wideband) and NotchFilters.
- 7. Oscillator Circuits Phase Shift and Wien Bridge Oscillators using singleOP-AMP
- 8. Function Generator using OPAMPs.
- 9. IC 555 Timer Monostable Operation Circuit, Astable OperationCircuit
- 10. Design Schmitt Trigger Circuits using Single OP-AMP with Referencevoltage.
- 11. PLL Operation and Estimation of Capture and Lockrange.
- 12. IC 566 VCOApplications.
- 13. Design of Dual Power Supply using 78XX and 79XX (use full wave BridgeRectifier
- 14. with shunt capacitance filters.

Equipment required for Laboratories:

- 1. DualTRPS
- 2. CRO
- 3. Function Generators1MHz
- 4. Multi Meters (Digital, FET inputVoltmeters)
- 5. Analog IC TrainerKits
- 7. Bread Boards
- 8. Components: IC741, IC555, IC565, IC1496, IC723, 7805, 7809, 7912,8038 and other

Essential components:

1. Analog IC Tester.

Add on Experiments:

- 1. Design a 4-bit R-2R Ladder network with OP-AMP Buffer and Measure theoutput waveform for various inputcombinations.
- 2. Construct Waveform Generator using 8038 for a fixed frequency and trace theoutput waveform.
- 3. Design and Construct ± 12V DC Power Supply using Three terminal VoltageRegulators 7812and7912.

III Year - I Semester	L	Т	P	С
	0	0	3	1.5

DIGITAL COMMUNICATIONS LAB

List of Experiments: Minimum Twelve Experiments to be conducted:

- 1. Time divisionmultiplexing.
- 2. Pulse codemodulation.
- 3. Differential pulse codemodulation.
- 4. Deltamodulation.
- 5. Frequency shiftkeying.
- 6. Phase shiftkeying.
- 7. Differential phase shiftkeying.
- 8. Companding
- 9. Source Encoder andDecoder
- 10. Linear Block Code-Encoder andDecoder
- 11. Binary Cyclic Code Encoder andDecoder
- 12. Convolution Code Encoder andDecoder
- 13. BCH Codes

Equipment required for Laboratories:

- 1. RPS 0 30 V
- 2. CRO 0 20 MHz.
- 3. Function Generators 0 1 MHz
- 4. RF Generators 0 1000 M Hz./0 100 MHz.
- 5. Rated Voltmeters and Ammeters
- 6. Lab Experimental kits for DigitalCommunication
- 7. Components
- 8. Breadboards and Multimeters
- 9 Spectrum Analyzer

III Year - I Semester	L	Т	Р	С
in rour roomester	0	0	3	1.5

MICROPROCESSOR and MICROCONTROLLERS LAB

List of Experiments:

PART- A: (Minimum of 5 Experiments has to be performed) **8086 Assembly Language Programming and Interfacing**

- 1. Programs for 16 -bit arithmetic operations (using Various AddressingModes).
 - a. Addition of n-BCDnumbers.
 - b. Multiplication and Divisionoperations.
- 2. Program for sorting anarray.
- 3. Program for Factorial of givenn-numbers.
- 4. Interfacing ADC to8086
- 5. Interfacing DAC to8086.
- 6. Interfacing stepper motor to8086.

PART-B: (Minimum of 5 Experiments has to be performed)

8051 Assembly Language Programming and Interfacing

- 1. Finding number of 1's and number of 0's in a given 8-bit number
- 2. Average ofn-numbers.
- 3. Program and verify Timer/ Counter in8051.
- 4. Interfacing Traffic Light Controller to8051.
- 5. UART operation in8051
- 6. Interfacing LCD to8051.

PART-C (Minimum of 2 Experiments has to be performed) Conduct the following experiments using ARM CORTEX M3 PROCESSOR USING KEIL MDK ARM

- 1. Write an assembly program to multiply of 2 16-bit binarynumbers.
- 2. Write an assembly program to find the sum of first 10 integers numbers.
- 3. Write a program to toggle LED every second using timerinterrupt.

Equipment Required:

- 1. Regulated Powersupplies
- 2. Analog/Digital StorageOscilloscopes
- 3. 8086 Microprocessorkits
- 4. 8051 microcontrollerkits
- 5. ADCmodule
- 6. DACmodule
- 7. Stepper motormodule

- 8. Keyboardmodule
- 9. LED, 7-SegemtUnits
- 10. DigitalMultimeters
- 11. ROM/RAM Interfacemodule
- 12. Bread Boardetc.
- 13. ARM CORTEX M3
- 14. KEIL MDKARM

III Year - I Semester	L	Т	Р	С
	0	0	3	1.5

MINI PROJECT WITH HARDWARE DEVELOPMENT

Mini Project is introduced during V semester. The student may execute the mini project during summer vacation for a period of 6 weeks i.e. between IV and V Semesters. The student shall submit a diary and a technical report for evaluation. This shall be evaluated in the V semester for 50 marks by a committee consisting of external examiner, Head of the Department along with supervisor and two senior faculty members of the Department. Mini Project work may involve carrying out a detailed feasibility study, literature survey along with the implementation results and preparing a work plan for major project. A student shall acquire 1.5 credits assigned, when he/she secures 40% or more marks for the total of 50 marks. In case, if a student fails, he/she shall reappear as and when the VII semester supplementary examinations are conducted.

III Year - I Semester	L	Т	P	С
	3	0	0	0

ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE

Course Objectives:

To facilitate the students with the concepts of Indian traditional knowledge and to make them understand the Importance of roots of knowledge system

- The course aim of the importing basic principle of third process reasoning and inference sustainability is at the course of Indian traditional knowledgesystem
- To understand the legal framework and traditional knowledge and biological diversity act 2002 and geographical indication act2003
- The courses focus on traditional knowledge and intellectual property mechanism of traditional knowledge and protection
- To know the student traditional knowledge in different sector

Course Outcomes:

After completion of the course, students will be able to:

- Understand the concept of Traditional knowledge and itsimportance
- Know the need and importance of protecting traditionalknowledge
- Know the various enactments related to the protection of traditionalknowledge
- Understand the concepts of Intellectual property to protect the traditionalknowledge

UNIT I

Introduction to traditional knowledge: Define traditional knowledge, nature and characteristics, scope and importance, kinds of traditional knowledge, the physical and social contexts in which traditional knowledge develop, the historical impact of social change on traditional knowledge systems. Indigenous Knowledge (IK), characteristics, traditional knowledge vis-à-vis indigenous knowledge, traditional knowledge Vs western knowledge traditional knowledge vis-à-vis formal knowledge

Learning Outcomes:

At the end of the unit, the student will able to:

- Understand the traditionalknowledge.
- Contrast and compare characteristics importance kinds of traditionalknowledge.
- Analyze physical and social contexts of traditionalknowledge.
- Evaluate social change on traditionalknowledge.

UNIT II

Protection of traditional knowledge: the need for protecting traditional knowledge Significance of TK Protection, value of TK in global economy, Role of Government to harness TK. Learning Outcomes:

At the end of the unit, the student will able to:

- Know the need of protecting traditionalknowledge.
- Apply significance of tkprotection.

- Analyze the value of tk in globaleconomy.
- Evaluate role of government

UNIT III

Legal framework and TK: A: The Scheduled Tribes and Other Traditional Forest Dwellers (Recognition of Forest Rights) Act, 2006, Plant Varieties Protection and Farmers Rights Act, 2001 (PPVFR Act);B:The Biological Diversity Act 2002 and Rules 2004, the protection of traditional knowledge bill, 2016. Geographical indications act 2003.

Learning Outcomes:

At the end of the unit the student will able to:

- Understand legal framework of TK.
- Contrast and compare the ST and other traditional forestdwellers
- Analyze plant variant protections
- Evaluate farmers rightact

UNIT IV

Traditional knowledge and intellectual property: Systems of traditional knowledge protection, Legal concepts for the protection of traditional knowledge, Certain non IPR mechanisms of traditional knowledge protection, Patents and traditional knowledge, Strategies to increase protection of traditional knowledge, global legal FORA for increasing protection of Indian Traditional Knowledge.

Learning Outcomes:

At the end of the unit, the student will ableto:

- Understand TK and IPR
- Apply systems of TKprotection.
- Analyze legal concepts for the protection of TK.
- Evaluate strategies to increase the protection of TK.

UNIT V

Traditional knowledge in different sectors: Traditional knowledge and engineering, Traditional medicine system, TK and biotechnology, TK in agriculture, Traditional societies depend on it for their food and healthcare needs, Importance of conservation and sustainable development of environment, Management of biodiversity, Food security of the country and protection of TK. Learning Outcomes:

At the end of the unit, the student will able to:

- Know TK in different sectors.
- Apply TK inengineering.
- Analyze TK in varioussectors.
- Evaluate food security and protection of TK in thecountry.

Reference Books:

- 1) Traditional Knowledge System in India, by Amit Jha, 2009.
- 2) Traditional Knowledge System and Technology in India by Basanta Kumar Mohanta and Vipin Kumar Singh, PratibhaPrakashan2012.
- 3) Traditional Knowledge System in India by Amit Jha Atlantic publishers, 2002
- 4) "Knowledge Traditions and Practices of India" Kapil Kapoor, MichelDanino

e-Resources:

- 1) https://www.youtube.com/watch?v=LZP1StpYEPM
- 2) http://nptel.ac.in/courses/121106003/

III Year - II Semester	L	Т	Р	C
	3	0	0	3

WIRED and WIRELESS TRANSMISSION DEVICES

Course objectives:

The student will be able to

- understand the applications of the electromagnetic waves in freespace.
- introduce the working principles of various types of antennas
- discuss the major applications of antennas with an emphasis on how antennas are employed to meet electronic systemrequirements.
- understand the concepts of radio wave propagation in theatmosphere.

UNIT I

MICROWAVE TRANSMISSION LINES: Introduction, Microwave Spectrum and Bands, Applicationsof Microwaves. Rectangular Waveguides – TE/TM mode analysis, Expressions for Fields, Characteristic Equation and Cut-off Frequencies, Filter Characteristics, Dominant and Degenerate Modes, Sketches of TE and TM mode fields in the cross-section, Mode Characteristics – Phase and Group Velocities, Wavelengths and Impedance Relations; Power Transmission and Power Losses in Rectangular Guide, Impossibility of TEM mode.Related Problems, Excitation techniques-waveguides

MICROSTRIP LINES– Introduction, Z_0 Relations, Effective Dielectric Constant, Losses, Q factor

UNIT II

ANTENNA FUNDAMENTALS: Introduction, Radiation Mechanism – single wire, 2 wire, dipoles, Current Distribution on a thin wire antenna. Antenna Parameters - Radiation Patterns, Patterns in Principal Planes, Main Lobe and Side Lobes, Beam widths, Polarization, Radiation Intensity, Directivity, Gain Antenna Apertures, Aperture Efficiency, Effective Height, illustrated Problems.

UNIT III

THIN LINEAR WIRE ANTENNAS: Retarded Potentials, Radiation from Small Electric Dipole, Quarter wave Monopole and Half wave Dipole – Current Distributions, Evaluation of Field Components, Power Radiated, Radiation Resistance, Beam widths, Directivity, Effective Area and Effective Height, Antenna Theorems – Applicability and Proofs for equivalence of directional characteristics, Loop Antennas: Small Loops - Field Components, Concept of short magnetic dipole, D and Rr relations for smallloops.

ANTENNA ARRAYS: Principle of Pattern Multiplication, N element Uniform Linear Arrays – Broadside, End-fire Arrays, Binomial Arrays, Arrays with Parasitic Elements. Yagi-Uda Arrays, Folded Dipoles and their characteristics.

ALANDA A

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UNIT IV

NON-RESONANT RADIATORS: Introduction, Traveling wave radiators, Long wire antennas, Rectangular Patch Antennas –Geometry and Parameters, Impact of different parameters on characteristics. Helical Antennas, Geometry, basic properties

VHF, UHF AND MICROWAVE ANTENNAS: Reflector Antennas: Corner Reflectors. Parabolic Reflectors – Geometry, characteristics, types of feeds, F/D Ratio, Spill Over, Back Lobes, Aperture Blocking, Cassegrain Feeds.

Horn Antennas – Types, Optimum Horns, Lens Antennas – Geometry, Features, Dielectric Lenses and Zoning, Applications.

UNIT V

WAVE PROPAGATION: Concepts of Propagation – frequency ranges and types of propagations. Ground Wave Propagation–Characteristics, Fundamental Equation for Free-Space Propagation, Basic Transmission Loss Calculations, Space Wave Propagation–Mechanism, LOS and Radio Horizon, Tropospheric Wave Propagation – Radius of Curvature of path, Effective Earth's Radius, Effect of Earth's Curvature, Field Strength Calculations. **ANTENNA MEASUREMENTS** – Patterns, Set Up, Distance Criterion, Directivity, VSWR, Impedance and Gain Measurements (Comparison, Absolute and 3-Antenna Methods)

TEXT BOOKS

- 1. Electromagnetic Waves and Radiating Systems E.C. Jordan and K.G. Balmain, PHI, 2nd Edition,2000.
- 2. Antennas and wave propagation- Sisir K Das, Annapurna Das, TMH, 2013.

REFERENCES

- 1. Antennas John D. Kraus, McGraw-Hill, 2nd Edition, 1988.
- 2. Transmission and Propagation E.V.D. Glazier and H.R.L. Lamont, The Services Text Book of Radio, vol. 5, Standard Publishers Distributors, Delhi, 2009.
- 3. Antennas and wave propagation by Prof G S N Raju, Pearsion Publications, First impression, 2016

Course Outcomes:

After going through this course the student will be able to

- Identify basic antennaparameters.
- Design and analyze wire antennas, loop antennas, reflector antennas, lens antennas, horn antennas and micro stripantennas
- Quantify the fields radiated by various types of antennas
- Design and analyze antennaarrays
- Analyze antenna measurements to assess antenna'sperformance
- Identify the characteristics of radio wavepropagation

III Year - II Semester	L	Т	Р	С
	3	0	0	3

OBJECTIVES:

The main objectives of this course are:

- To learn the MOS Process Technology
- To understand the operation of MOS devices
- Understand and learn the characteristics of CMOS circuit construction.
- Describe the general steps required for processing of CMOS integrated circuits.
- To impart in-depth knowledge about analog and digital CMOS circuits.

UNIT-I:

INTRODUCTION AND BASIC ELECTRICAL PROPERTIES OF MOS CIRCUITS: VLSI Design Flow, Introduction to IC technology, Fabrication process: nMOS, pMOS and CMOS. I_{ds} versus V_{ds} Relationships, Aspects of MOS transistor Threshold Voltage, MOS transistor Trans, Output Conductance and Figure of Merit. nMOS Inverter, Pull-up to Pull-down Ratio for nMOS inverter driven by another nMOS inverter, and through one or more pass transistors. Alternative forms of pull-up, The CMOS Inverter, Latch-up in CMOS circuits, Bi-CMOS Inverter, Comparison between CMOS and BiCMOS technology, MOS Layers, Stick Diagrams, Design Rules and Layout, Layout Diagrams for MOS circuits

UNIT-II:

BASIC CIRCUIT CONCEPTS: Sheet Resistance, Sheet Resistance concept applied to MOS transistors and Inverters, Area Capacitance of Layers, Standard unit of capacitance, some area Capacitance Calculations, The Delay Unit, Inverter Delays, driving large capacitive loads, Propagation Delays, Wiring Capacitances, Choice of layers.

SCALING OF MOS CIRCUITS: Scaling models and scaling factors, Scaling factors for device parameters, Limitations of scaling, Limits due to sub threshold currents, Limits on logic levels and supply voltage due to noise and current density. Switch logic, Gate logic.

UNIT-III:

BASIC BUILDING BLOCKS OF ANALOG IC DESIGN: Regions of operation of MOSFET, Modelling of transistor, body bias effect, biasing styles, single stage amplifier with resistive load, single stage amplifier with diode connected load, Common Source amplifier, Common Drain amplifier, Common Gate amplifier, current sources and sinks.

UNIT-IV:

CMOS COMBINATIONAL AND SEQUENTIAL LOGIC CIRCUIT DESIGN:

Static CMOS Design: Complementary CMOS, Rationed Logic, Pass-Transistor Logic. **Dynamic CMOSDesign:** Dynamic Logic-Basic Principles, Speed and Power Dissipation of Dynamic Logic,

Issues in Dynamic Design, Cascading Dynamic Gates, Choosing a Logic Style,

Gate Design in the Ultra Deep-Submicron Era, Latch Versus Register, Latch based design, timing decimation, positive feedback, instability, Metastability, multiplexerbased latches, Master-Slave Based Edge Triggered Register, clock to q delay, setup time, hold time, reduced clock load master slave registers, Clocked CMOSregister. Cross coupled NAND and NOR, SR Master Slave register, Storage mechanism, pipelining

UNIT-V:

FPGA DESIGN: FPGA design flow, Basic FPGA architecture, FPGA Technologies, Introduction to FPGA Families.

INTRODUCTION TO ADVANCED TECHNOLOGIES: Giga-scale dilemma, Short channel effects, High–k, Metal Gate Technology, FinFET, TFET.

TEXTBOOKS:

- 1. Essentials of VLSI Circuits and Systems Kamran Eshraghian, Douglas and A. Pucknell And SholehEshraghian, Prentice-Hall of India Private Limited, 2005 Edition.
- 2. Design of Analog CMOS Integrated Circuits by BehzadRazavi, McGraw Hill, 2003
- 3. Digital Integrated Circuits, Jan M. Rabaey, Anantha Chandrakasan and Borivoje Nikolic, 2nd edition, 2016.

REFERENCES:

- 1. "Introduction to VLSI Circuits and Systems", John P. Uyemura, John Wiley & Sons, reprint 2009.
- Integrated Nanoelectronics: Nanoscale CMOS, Post-CMOS and Allied Nanotechnologies Vinod Kumar Khanna, Springer India, 1st edition, 2016.
- 3. FinFETs and other multi-gate transistors, ColingeJP, Editor New York, Springer, 2008.

OUTCOMES:

At the end of this course the student will be able to:

- Demonstrate a clear understanding of CMOS fabrication flow and technology scaling.
- Apply the design Rulesand draw layout of a given logic circuit.
- Design MOSFET based logic circuit.
- Design basic building blocks in Analog IC design.
- Analyze the behaviour of amplifier circuits with various loads.
- Design various CMOS logic circuits for design of Combinational logic circuits.
- Design amplifier circuits using MOS transistors.
- Design MOSFET based logic circuits using various logic styles like static and dynamic CMOS.
- Analyze the behaviour of static and dynamic logic circuits.

III Year - II Semester	L	L	Т	Р	С
	3	3	0	0	3
	IGNAL PROCESSING				

Course Objectives:

The student will be able to

- Analyze the discrete-time signals and systems in time and frequencydomains.
- Know the importance of FFT algorithm for computation of Discrete FourierTransform
- Understand the various implementations of digital filterstructures
- Learn the FIR and IIR Filter designprocedures
- Learn the concepts of DSPProcessors

UNIT I INTRODUCTION: Introduction to Digital Signal Processing: Discrete-time signals & sequences, Classification of discrete-time systems, stability and causality of LTI systems, Response of LTI systems to arbitrary inputs. Solution of linear constant coefficient difference equations. Discrete-time Fourier Transform (DTFT), Frequency domain representation of discrete-time signals and systems. Review of Z-transforms, solution of difference equations using Z-transforms, Systemfunction.

UNIT II DISCRETE FOURIER SERIES & FOURIER TRANSFORMS: Properties of discrete Fourier series, DFS representation of periodic sequences, Discrete Fourier transforms: Properties of DFT, linear filtering methods based on DFT, Fast Fourier transforms (FFT)-Radix-2 decimation-in-time and decimation-in-frequency FFT Algorithms, Inverse FFT, Circular convolution and linear convolution using DFT.

UNIT III DESIGNOF IIRDIGITAL FILTERS& REALIZATIONS: Analog filter

approximations – Butterworth and Chebyshev, Design of IIR Digital filters from analog filters, Design Examples, Analog and Digital frequency transformations. Basic structures of IIR systems, Transposed forms.

UNIT IV DESIGN OF FIR DIGITAL FILTERS & REALIZATIONS:

Characteristics of FIR Digital Filters, Frequency response. Design of FIR Digital Filters using Window technique and Frequency Sampling technique, Comparison of IIR & FIR filters. Basic structures of FIR systems.

UNIT V INTRODUCTION TO DSP PROCESSORS: Introduction to programmable DSPs: Multiplier and Multiplier Accumulator, Modified bus structures and memory access schemes in P-DSPs, Multiple Access Memory, Multiported memory, VLIW architecture, Pipelining, Special addressing modes, On-Chip Peripherals.

Architecture of ARM processors: Technical details of ARM Processors, Introduction to

Cortex-M3 and cortex M4 processors - Processor type, processor architecture, instruction set, block diagram, memorysystems.

TEXT BOOKS:

- 1. Digital Signal Processing, Principles, Algorithms and Applications: John G. Proakis, Dimitris G. Manolakis, Pearson Education/PHI,2007.
- 2. Discrete Time Signal Processing, A. V. Oppenheim and R. W. Schaffer, PHI, 2010.
- 3. Digital Signal Processors, Architecture, Programming and Applications, B.Venkataramani, M. Bhaskar, TMH,2002.
- 4. Digital Signal Processing Using the ARM Cortex M4, Donald S.Reay,2015.

REFERENCE BOOKS:

- 1 Digital Signal Processing: MH Hayes, Schaum's Outlines, TMH,2007.
- 2 Fundamentals of Digital Signal Processing using MATLAB Robert J. Schilling, Sandra L. Harris, Thomson, 2007.
- 3 Digital Signal Processing, Alan V. Oppenheim, Ronald W. Schafer, PHI Ed., 2006
- 4 Digital Signal Processing, Tarun Kumar Rawat by OXFORD Publishers

Course Outcomes:

After going through this course the student will be able to

- Formulate engineering problems in terms of DSPoperations
- Analyze digital signals and systems
- Analyze discrete time signals in frequencydomain
- Design digital filters and implement with different structures
- Understand the keyarchitectural

III Year - II Semester		L	Τ	P	С				
		3	0	0	3				
Cl	CELLULAR & MOBILE COMMUNICATION								
	(Professional Elective 2)								

Course Objectives:

The student will be introduced to:

- Understand the basic cellular concepts like frequency reuse, cell splitting, cell sectoring etc and various cellularsystems.
- Understand the different types of interference s influencing cellular andmobile communication.
- Understand the frequency management, channel assignment and various propagation effects in Cellular environment.
- Understand the different types antennas used at cell site andmobile.
- Understand the concepts of handoff and types of handoffs.
- Understand the architectures of GSM and 3G cellularsystems.

UNIT I

CELLULAR MOBILE RADIO SYSTEMS: Introduction to Cellular Mobile System, uniqueness of mobile radio environment, operation of cellular systems, consideration of the components of Cellular system, Hexagonal shaped cells, Analog and Digital Cellular systems.

CELLULAR CONCEPTS: Evolution of Cellular systems, Concept of frequency reuse, frequency reuse ratio, Number of channels in a cellular system, Cellular traffic: trunking and blocking, Grade of Service; Cellular structures: macro, micro, pico and femto cells; Cell splitting, Cell sectoring.

UNIT II

INTERFERENCE: Types of interferences, Introduction to Co-Channel Interference, real time Co-Channel interference, Co-Channel measurement, Co-channel Interference Reduction Factor, desired C/I from a normal case in a omni-directional Antenna system, design of Antenna system, antenna parameters and their effects, diversity receiver, non-cochannel interference-different types.

UNIT III

FREQUENCY MANAGEMENT AND CHANNEL ASSIGNMENT: Numbering and grouping, setup access and paging channels, channel assignments to cell sites and mobile units: fixed channel and non-fixed channel assignment, channel sharing and borrowing, overlaidcells. **CELL COVERAGE FOR SIGNAL AND TRAFFIC:** Signal reflections in flat and hilly terrain, effect of human made structures, phase difference between direct and reflected paths, straight line path loss slope, general formula for mobile propagation over water and flatopen area, near and long distance propagation, antenna height gain, form of a point to pointmodel.

UNIT IV HANDOFF STRATEGIES:

Concept of Handoff, types of handoff, handoff initiation, delaying handoff, forced handoff, mobile assigned handoff, intersystem handoff, soft and hard hand offs, vehicle locating methods, dropped call rates and their evaluation.

UNIT V

DIGITAL CELLULAR NETWORKS: GSM architecture, GSM channels, multiple access schemes; TDMA, CDMA, OFDMA.3G and 4G Wireless Standards GSM, GPRS, WCDMA, LTE, Wi-MAX, Introduction to 5G standards.

TEXT BOOKS:

- 1. Mobile Cellular Telecommunications W.C.Y. Lee, Tata McGraw Hill, 2nd Edn., 2006.
- 2. Principles of Mobile Communications Gordon L. Stuber, Springer International2nd Edition,2007.
- 3. Advanced Wireless Communications-4G By. Savo G Glisic, John Wiley & Sons Publication 2ndEdition

REFERENCES:

- 1. Wireless Communications Theodore. S. Rapport, Pearson education, 2nd Edn., 2002.
- 2. Wireless Communication and Networking Jon W. Mark and WeihuaZhqung, PHI,2005.
- 3. Fundamentals of Wireless CommunicationBy. David Tse and Pramod Viswanath, Cambridge UniversityPress

Course Outcomes:

At the end of this course the student can able to:

- Identify the limitations of conventional mobile telephone systems; understandthe concepts of cellular systems.
- Understand the frequency management, channel assignment strategies and antennasin cellularsystems.
- Understand the concepts of handoff and architectures of various cellular systems.

III Year - II Semester		L	Т	Р	С
		3	0	0	3
	DIGITAL IC DESIGN				
	(Professional Elective-2)				

Course objectives:

The main objectives of this course are:

- The student will be able to understand the MOSD esign.
- In this course, students can study Combinational MOS Logic Circuits and Sequential MOSLogicCircuits.
- Another main object of this course is to motivate the graduate students to design andto develop the Digital Integrated Circuits for differentApplications.
- The concepts of Semiconductor Memories, Flash Memory, RAMarrayorganization

UNIT-I

MOS DESIGN: Pseudo NMOS Logic – Inverter, Inverter threshold voltage, output high voltage, Output Low voltage, gain at gate threshold voltage, Transient response, Rise time, Fall time, Pseudo NMOS logic gates, Transistor equivalency, CMOS Inverter logic.

UNIT-II

COMBINATIONAL MOS LOGIC CIRCUITS: MOS logic circuits with NMOS loads, Primitive CMOS logic gates – NOR & NAND gate, Complex Logic circuits design – Realizing Boolean expressions using NMOS gates and CMOS gates, AOI and OIA gates, CMOS full adder, CMOS transmission gates, Designing with Transmission gates.

UNIT-III

SEQUENTIAL MOS LOGIC CIRCUITS: Behaviour of bistable elements, SR Latch, Clocked latch and flip flop circuits, CMOS D latch and edge triggered flip-flop.

DYNAMIC LOGIC CIRCUITS: Basic principle, Voltage Bootstrapping, Synchronous dynamic pass transistor circuits, Dynamic CMOS transmission gate logic, High performance Dynamic CMOS circuits.

UNIT-IV

INTERCONNECT: Capacitive Parasitics, Resistive Parasitics, InductiveParasitics, Advanced Interconnect Techniques.

UNIT-V

SEMICONDUCTOR MEMORIES: Memory Types, RAM array organization, DRAM – Types, Operation, Leakage currents in DRAM cell and refresh operation, SRAM operation Leakage currents in SRAM cells, Flash Memory- NOR flash and NANDflash.

TEXTBOOKS:

- 1. Digital Integrated Circuits A Design Perspective, Jan M. Rabaey, AnanthaChandrakasan, Borivoje Nikolic,2ndEd.,PHI,2016.
- 2. Digital Integrated Circuit Design Ken Martin, Oxford UniversityPress,2011.

REFERENCES:

- CMOS Digital Integrated Circuits Analysis and Design Sung-Mo Kang, Yusuf Leblebici, TMH, 3rd Ed., 2011.
- 2. CMOS VLSI Design Neil H.E Weste, David harris, Ayan Banerjee 3rdEdition,Pearson,2006.

Course Outcomes:

At the end of this course the student will be able to:

- Understand the concepts of MOSD esign.
- Design and analysis of Combinational and SequentialMOSCircuits.
- Extend the Digital IC Design toDifferentApplications.
- Understand the Concepts of Semiconductor Memories, Flash Memory, RAM arrayorganization

III Year - II Semester		L	Τ	P	С
		3	0	0	3
]]	BUSINESS INTELLIGENCE & ANALYT (Professional Elective 2)	TICS			

OBJECTIVE:

To make students to extract insights from large volumes of data in various forms, by employing statistical mathematics techniques for drawing conclusions about that information

UNIT – I

Essentials of Data analysis - Data Collection, Data Cleansing, Data Exploration, Statistical Analysis, Reporting, Decision

Statistical Methods: Arithmetic mean, The Arithmetic mean of grouped Data, The Median, The mode; The variance and standard deviation, Interpretation of SD, Chebyshev's Lemma or Rule (for sample), Skewness and Kurtosis, Skewness and its measurement, Kurtosis and its measurements.

Probability Distribution & Statistical Inference: Elements of Probability, Random Variable, Probability distribution/density functions (Normal, Binomial, Poisson), Point Estimate, Interval Estimate, Testing of hypothesis

UNIT – II

Visualization: Comparison, Distribution, Relationship, Composition, Visual Charts – Bar chart, Column chart, variable width column chart, Line chart, Column histogram, Line histogram, Scatter chart, stacked column chart, stacked 100% column chart, waterfall chart, pie chart, stacked area chart, 3D area chart, stacked 100% area chart, Bubble chart, Geometric Forms, Pictorial Diagrams, ParetoDiagrams

Applications: Graphical representation of data from Battery health monitoring, Indoor Air Quality, CO2 emissions by country/region (Practice using MS-Excel & R/Python)

UNIT – III

Time series Analysis: Characteristics Movements in a time series; Time series models; Measurement of Trend; Secular Trend; Seasonal Movements; Cyclical Movements; Irregular Movements; Long Cycles,

Applications: Analyze the trends of population growth, global temperatures, solar radiation, wind patterns. (Practice using MS-Excel &R/Python).

$\mathbf{UNIT} - \mathbf{IV}$

Business Intelligence and Analytics: What is Business Intelligence and Analytics? The need for BI and analytics, how to determine requirements, Using the BI tools for extracting insights for data driven decisions

Microsoft Power BI - Part I: Understanding key concepts in business intelligence, data analysis, and data visualization. Getting Started with Power BI and Analytics - Creating account, Power BI Desktop, Working with Data - Connect, Import, Shape and Transform data, Creating Visualization, AuthorReportsandScheduleautomatedrefreshofreports, PublishingDatatoBI

online, Using Quick Insights, Use natural language queries, Create real-time dashboards, Create custom visualizations which can be re-usable in reports and dashboards, Sharing dashboard effectively based on needs.

UNIT – V

Microsoft Power BI - Part II: Exploring live connections to data with Power BI, connecting directly to data bases, Introduction to Power BI Development API, Leveraging custom visuals in Power BI, Introduction to DAX

TEXTBOOKS:

- 1. Statistics Concepts and applications, Nabendu pal & Sahadeb sarkar, PHI Learning Pvt. Ltd.,2008.
- 2. Effective Data Visualization: The Right Chart for the Right Data 1st Edition, Dr. Stephanie D. H. Evergreen, SAGEPublications
- 3. Introducing Microsoft Power BI, Alberto Ferrari and Marco Russo, 2016.

REFERENCE BOOKS

- 1. Applied Microsoft Power BI: Bring your data to life! Teo Lachev, 2015
- 2. Microsoft Power BI guidedlearning.

CourseOutcomes:

The student will be ableto

- Understand the essentials of data analytics and the corresponding terminologies
- Determine the relevance of data tobusiness
- Be familiar with the steps involved in the analyticsprocess
- Understand and use statistical and graphical analysis to bring insights out from thedata
- Understand and use BI tools to present data in the form of Dashboards and reports

III Year - II Semester		L	Т	Р	С
		3	0	0	3
	PATTERN RECOGNITION				
	(Professional Elective 2)				

Course Objectives

- To equip students with basic mathematical and statistical techniques commonly used in Patternrecognition.
- To introduce students to a variety of pattern recognitionalgorithms.
- Enable students to apply machine learning concepts in real lifeproblems.

Unit I

Introduction to Pattern Recognition: Problems, applications, design cycle, learning and adaptation, examples, Probability Distributions, Parametric Learning - Maximum likelihood and Bayesian Decision Theory- Bays rule, discriminate functions, loss functions and Bayesian error analysis

Unit II

Linear models: Linear Models for Regression, linear regression, logistic regression Linear Models for Classification

Unit III

Neural Network: perception, multi-layer perception, back propagation algorithm, error surfaces, practical techniques for improving back propagation, additional networks and training methods, Ad boost, Deep Learning

Unit IV

Linear discriminate functions - decision surfaces, two-category, multi-category, minimumsquared error procedures, the Ho-Kashyap procedures, linear programming algorithms, Support vector machine

Unit V

Algorithm independent machine learning – lack of inherent superiority of any classifier, bias and variance, re-sampling for classifier design, combining classifiers

Unsupervised learning and clustering – k-means clustering, fuzzy k-means clustering, hierarchical clustering

TEXT BOOKS:

- 1. Richard O. Duda, Peter E. Hart, David G. Stork, "Pattern Classification", 2nd Edition John Wiley & Sons, 2001.
- 2. Machine learning by Saikat Dutt, S. Chandramouli and A.K.Das , Pearson publishing,2018.

REFERENCE BOOKS:

- 1. C. Bishop, "Pattern Recognition and Machine Learning", Springer, 2006
- 2. Trevor Hastie, Robert Tibshirani, Jerome H. Friedman, "The Elements of Statistical Learning", 2nd Edition, Springer, 2009.

Course Outcomes:

At the end of this course, students will be able to

- Study the parametric and linear models forclassification
- Design neural network and SVM forclassification
- Develop machine independent and unsupervised learningtechniques.

III Year - II Semester		L	Т	P	С
		3	0	0	3
	ROBOTICS and AUTOMATION				
	(Professional Elective 2)				

OBJECTIVE:

To impart knowledge about basic mathematics related to industrial robots for their control, design and application in robotics & automationIndustries.

UNIT – I

Introduction to Robotics

Types and components of a robot, classification of robots

Study components of an industrial robot (PUMA, KUKA, FANUC, MTAB, UR, etc.) and its DH parameters.

UNIT – II

Robot Kinematics and Dynamics:

Kinematic Modelling: Translation and Rotation Representation, Coordinate transformation, DH parameters, Forward and inverse kinematics, Jacobian, Singularity, and Statics.

Dynamic Modelling: Forward and inverse dynamics, Equations of motion using Euler-Lagrange formulation, Newton Euler formulation.

Sensors

Sensor: Contact and Proximity, Position, Velocity, Force, Tactile etc. Introduction to Cameras, Camera calibration, Geometry of Image formation, Euclidean / Similarity / Affine / Projective transformations, Vision applications in robotics

UNIT – III

Robot Actuation Systems

Actuators: Electric, Hydraulic and Pneumatic; Transmission: Gears, Timing Belts and Bearings, Parameters for selection of actuators.

Robot Control:

Robot control, Independent joint control, PD and PID feedback, actuator models, nonlinearity of manipulator models, issues in nonlinear control, force feedback, hybrid control, Motion Planning, Obstacle avoidance, configuration space, road map methods, graph search algorithms, potential fieldmethods

$\mathbf{UNIT} - \mathbf{IV}$

Control Hardware and Interfacing:

Embedded systems: Microcontroller Architecture and integration with sensors, actuators, components, Programming Applications for Industrial robot - programming in – VAL II **Case Study:** Bin Picking in Industrial Warehouse.

UNIT – V AI in Robotics:

Applications in unmanned systems, defence, medical, industries, Robotics and Automation for Industry 4.0 Robot safety and social robotics

TEXTBOOKS:

- 1. Introduction to Robotics Mechanics and Control, John J. Craig, 3rd Edition, Pearson Prentice Hall,2004.
- 2. Industrial Robots, Groover M. P. and Ashish Dutta, McGrawHill,2012
- 3. Robots Dynamics & Control, Spong M. W. and Vidyasagar M., John Wiley & Sons (ASIA) PteLtd.

REFERENCE BOOKS

- Introduction to Robotics: Analysis, Control, Applications, Saeed B. Niku, 3rdEdition, Wiley,2019
- 2. Robotics Engineering, R. Klafter, PHI.
- 3. Robotics, Subir K. Saha, McGrawHill.

Course Outcomes:

The student will be able to:

- Perform kinematic and dynamic analyses with simulation.
- Design control laws for a simplerobot.
- Integrate mechanical and electrical hardware for a real prototype of roboticdevice.
- Select a robotic system for given industrial application.

III Year - II Semester		L	Т	P	С
		3	0	0	3
	Data Mining				
	Open Elective (OE1)				

Course objectives:

The main objectives of this course are:

- Students will be enabled to understand and implement classical models and algorithms in data warehousing and datamining.
- They will learn how to analyze the data, identify the problems, and choose the relevant models and algorithms to apply.
- They will further be able to assess the strengths and weaknesses of various methods and algorithms and to analyze theirbehavior.

UNIT-I:

INTRODUCTION: Need of Data Warehouse, Need and Usage of Data Mining Technologies, Types of Data and Patterns to be mined, In Real Time Applications. Brief Introduction of Pattern Recognition: Pattern, Feature, Database Query Vs Mining, Curse of Dimensionality, Need for Efficiency. Major Issues in Data Mining. Data Objects and Attribute Types, Basic Statistical Descriptions of Data, Data Visualization, Measuring Data Similarity and Dissimilarity

UNIT-II:

DATA PRE-PROCESSING: Data Preprocessing: An Overview, Data Cleaning, Data Integration, Data Reduction, Data Transformation and Data Discretization

UNIT-III:

CLASSIFICATION: Basic Concepts, General Approach to solving a classification problem, Decision Tree Induction: Working of Decision Tree, building a decision tree, methods for expressing an attribute test conditions, measures for selecting the best split, Algorithm for decision tree induction. Bayes' Theorem, Naïve Bayesian Classification, Bayesian Belief Networks

UNIT-IV:

ASSOCIATION ANALYSIS: BASIC CONCEPTS AND ALGORITHMS: Problem Defecation, Frequent Item Set generation, Rule generation, compact representation of frequent item sets, FP-Growth Algorithm. (**Tan &Vipin**)

ALANIA SALANA

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UNIT-V:

CLUSTER ANALYSIS: BASIC CONCEPTS AND ALGORITHMS: OVERVIEW: Basics and Importance of Cluster Analysis, Clustering techniques, Different Types of Clusters; Kmeans: The Basic K-means Algorithm, K-means Additional Issues, Bisecting K-means, Strengths and Weaknesses; Agglomerative Hierarchical Clustering: Basic Agglomerative Hierarchical Clustering Algorithm DBSCAN:Traditional Density Center-Based Approach, DBSCAN Algorithm, Strengths and Weaknesses. (**Tan&Vipin**)

TEXT BOOKS:

1. Introduction to Data Mining: Pang-Ning Tan & Michael Steinbach, Vipin Kumar, Pearson.

2. Data Mining concepts and Techniques, 3/e, Jiawei Han, Michel Kamber, Elsevier.

REFERENCE BOOKS:

- 1. Data Mining Techniques and Applications: An Introduction, Hongbo Du, CengageLearning.
- 2. Data Mining: VikramPudi and P. Radha Krishna, Oxford.
- 3. Data Mining and Analysis Fundamental Concepts and Algorithms; Mohammed J.Zaki, Wagner Meira, Jr,Oxford
- 4. Data Warehousing Data Mining & OLAP, Alex Berson, Stephen Smith, TMH.
- 5. http://onlinecourses.nptel.ac.in/noc18_cs14/preview (NPTEL course by Prof.PabitraMitra)
- 6. http://onlinecourses.nptel.ac.in/noc17_mg24/preview (NPTEL course by Dr. Nandan Sudarshanam& Dr. Balaraman Ravindran)

http://www.saedsayad.com/data_mining_map.htm

Course Outcomes:

At the end of this course the student will be able to:

- Understand Data MiningPrinciples
- Identify appropriate data mining algorithms to solve real world problems
- Compare and evaluate different data mining techniques like classification, prediction, clustering and association rulemining

III Year - II Semester		L	Т	Р	С
		3	0	0	3
		•			
	POWER ELECTRONICS				
	Open Elective (OE1)				

Course objectives:

The main objectives of this course are:

- To study the characteristics of various power semiconductor devices and gate drivecircuits.
- To understand the operation of single phase full-wave converters and analyze harmonics in the inputcurrent.
- To study the operation of three phase full-waveconverters.
- To understand the operation of different types of DC-DCconverters.
- To understand the operation of inverters and application of PWM techniques forvoltage control and harmonic mitigation.

UNIT-I:

Power Semiconductor Devices: Operation of SCR, power MOSFET and power IGBT and their characteristics–Gate drive circuits for SCR, IGBT and MOSFET-protection circuits for power IGBT and power MOSFETs.

UNIT-II:

AC-DC Single-Phase Converters: 1-phase fully-controlled bridge rectifiers feeding R load, RL, RLE loads (continuous and discontinuous current conduction mode of operation)– 1-phase semi-controlled bridge rectifiers feeding R, RL and RLE loads (continuous and discontinuous current conduction mode of operation)– HarmonicAnalysis.

UNIT-III:

AC-DC Three-Phase Converters: 3-phase Full converter feeding R, RL and RLE loads (continuous current conduction mode only)– 3-phase semi-converter feeding R, RL and RLE loads (continuous current conduction mode only)–Harmonic analysis -Dual converter.

UNIT-IV:

DC–DC Converters: Analysis of Buck, boost, buck-boost converters in Continuous Conduction Mode (CCM) and Discontinuous Conduction Modes (DCM) – Output voltage equations using volt-sec balance in CCM & DCM- output voltage ripple & inductor current ripple for CCM only – Principle operation of forward and fly back converters inCCM.

HEHRUTEC

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UNIT – V:

DC–AC Converters and AC-AC converters: 1- phase half-bridge and full bridge inverters with R and RL loads – Unipolar and bipolar switching-Quasi-square wave pulse width modulation-3-phase square wave inverters – 120° conduction and 180° conduction modes of operation – Sinusoidal pulse width modulation –single-phase Current Source Inverter (CSI)-single-phase AC-AC voltage regulator with R and RLload.

TEXT BOOKS:

- 1. Power Electronics: converters, applications & design -by Nedmohan, Tore M.Undeland, Robbins by Wiley India Pvt.Ltd.
- 2. Power Electronics- by Daniel W.Hart, Mc Graw Hillpublications
- 3. Power Electronics: Circuits, Devices and Applications by M. H. Rashid, Prentice Hallof India

REFERENCE BOOKS:

- 1. Power Electronics: Essentials & Applications by L.Umanand, Wiley, Pvt. Limited, India, 2009
- 2. Elements of Power Electronics-Philip T.Krein. Oxfordpublishers.
- 3. Power Electronics by P.S.Bhimbra, KhannaPublishers.

Course Outcomes:

At the end of this course the student will be able to:

- Explain the characteristics of various power semiconductor devices and understand the gate drivercircuits.
- Explain the operation of single-phase full wave converters and performharmonic analysis.
- Explain the operation of three phase full–wave converters and performharmonic analysis.
- Analyze the operation of different types of DC-DCconverters.
- Explain the operation of inverters and application of PWM techniques for voltagecontrol and harmonicmitigation.

III Year - II Semester		L	Т	P	С
		3	0	0	3
MEMS and its applications Open Elective (OE1)					
	open Ekcetve (OEI)				

Course objectives:

- To introduce the basic concepts of micro systems and advantages of miniaturization.
- To study the various materials and their properties used for micromachiningtechniques.
- To analyze the fundamentals of micromachining and micro fabricationtechniques.
- To impart knowledge of the basic concept of electromechanical effects, thermal effects Micro fluidics and Integratedfluidicsystems.
- To study the fundamentals of pressure sensors and accelerometer sensors throughdesign andmodeling.

UNIT I: Overview of MEMS and Microsystems: MEMS and Microsystems, Typical MEMS and Microsystem products, Evolution of Microfabrication, Microsystem and Microelectronics, The Multidisciplinary nature of microsystem design and manufacture, Microsystem and Miniaturization. Application of Microsystems in the automotive industry, Application of Microsystems in other industries: Health care industry, Aerospace industry, Industrial products, Consumer products, Telecommunications. Markets for Microsystems.

UNIT II: Working Principles of Microsystems: Introduction, Microsensors: Acoustic Wave Sensors, Biomedical sensors and Biosensors, Chemical sensors, Pressure sensors, Thermal sensors. Micro actuation: Actuation using thermal forces, shaped memory alloys, Piezoelectric crystals, Electrostatic forces. MEMS with Micro actuators: Microgrippers, Micromotors, Microvalves, Micropumps, Micro accelerators, Microfluidics.

UNIT III: Scaling Laws in Miniaturization: Introduction to scaling, Scaling in Geometry, Scaling in Rigid-Body Dynamics, Scaling in Electrostatic Forces, Scaling in Electromagnetic Forces, Scaling in Electricity, Scaling in Fluid Mechanics, Scaling in Heat Transfer.

Materials for MEMS and Microsystems: Introduction, Substrates and wafers, Active substrate materials, Silicon as a substrate material. Silicon compounds, Silicon piezo resistors, Gallium Arsenide, Quartz, Piezoelectric crystals, Polymers, Packing materials.

UNIT IV: Micro system Fabrication Process: Photolithography, Ion Implantation, Diffusion, Oxidation, ChemicalVapourDeposition, PhysicalVapourDeposition, Deposition by Epitaxy, Etching.

Overview of Micro manufacturing and Applications: Bulk Micro manufacturing- any one example of application, Surface Micromachining- any one example of application. LIGA Process- any one example of application.

UNIT V:Applications of MEMS-Switching: Introduction, Switch parameters, Basics of switching, Mechanical switches, Electronic switches for RF and microwave applications, Mechanical RF switches, PIN diode RF switches.

Text Books:

1. Tai-Ran Hsu, "MEMS and Microsystems: Design and Manufacture", Tata McGraw Hill, (2002).

2. Gabriel M. Rebeiz, "RF MEMS Theory, Design and Technology", Wiley India PvtLtd.

Reference Books:

1. Stephen D. Senturia, "Microsystem Design", Springer International Edition, (2010).

2. Mohamed Gad-el-Hak, "The MEMS Handbook", CRC Press,(2002).

3. Chang Liu, "Foundations of MEMS", Second Edition, PearsonPublication.

E-resources:

- 1. https://nptel.ac.in/courses/117105082/4
- 2. <u>https://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-777j-design-and-fabrication-of-microelectromechanical-devices-spring-2007/lecture-notes/</u>
- 3. https://www.edx.org/course/micro-nanofabrication-mems-epflx-memsx-0

Course Outcomes:

- Understand the basic overview of MEMS and Microsystems with broad category of MEMS & Micro systemapplications.
- Understanding the working principles of Microsystems
- Understand the Scaling Laws in Miniaturization and Materials for MEMS and Microsystems
- Understand the Micro system Fabrication Process and Analyze the different Micro manufacturing process and Applications.
- Study and Analyze the different types of RF switches, Various Switching Mechanismand theirapplications..

III Year - II Semester		L	Τ	P	С
		3	0	0	3
	Artificial Neural Networks				
	Open Elective (OE1)				

Course objectives:

The main objectives of this course are:

- To provide an introduction to thefield of artificial neural networks and machinelearning.
- To teach students how to solve practical problems via implementation of these techniques via simulation.
- To promote further independent learning on the topics of artificial neural networks and machinelearning.

UNIT-I:

INTRODUCTION: History of Neural Networks, Structure and Functions of Biological and Artificial Neuron, Neural Network Architectures, Characteristics of ANN, Basic Learning Laws and Methods.

UNIT-II:

SUPERVISED LEARNING: Single Layer Neural Network and architecture, McCulloch-Pitts Neuron Model, Learning Rules, Perceptron Model, Perceptron Convergence Theorem, Delta learning rule, ADALINE, Multi-Layer Neural Network and architecture, MADALINE, Back Propagation learning, Back Propagation Algorithm.

UNIT-III:

UNSUPERVISED LEARNING-1: Outstar Learning, Kohenen Self Organization Networks, Hamming Network And MAXNET, Learning Vector Quantization, Mexican hat.

UNIT-IV:

UNSUPERVISED LEARNING-2: Counter Propagation Network -Full Counter Propagation network, Forward Only Counter Propagation Network, Adaptive Resonance Theory (ART) - Architecture, Algorithms.

UNIT V:

ASSOCIATIVE MEMORY NETWORKS: Introduction, Auto Associative Memory, Hetero Associative Memory, Bidirectional Associative Memory(BAM) -Theory and Architecture, BAM Training Algorithm, Hopfield Network: Introduction, Architecture of Hopfield Network.

TEXT BOOKS:

- 1. B. Yegnanarayana" Artificial neural networks" PHI, New Delhi.
- 2. S.N. Sivanandam, S.N. Deepa, "Introduction to Neural Networks using MATLAB6.0", TATA MCGraw- Hillpublications.
- 3. J.M. Zurada," Introduction to Artificial neural systems" Jaicopublishing.

REFERENCE BOOKS:

- 1. S.Rajasekaran and G.A.Vijayalakshmipai "Neural Networks.Fuzzy Logicand genetic Algorithms".
- 2. James A Freeman and Davis Skapura" Neural Networks Algorithm, applications and programming Techniques", Pearson Education, 2002.
- 3. Simon Hakins "Neural Networks " PearsonEducation.

Course Outcomes:

At the end of this course the student will be able to:

- Survey of attractive applications of Artificial NeuralNetworks.
- practically approach for using Artificial Neural Networks in various technical, organizational and economicapplications

III Year - II Semester	L	Т	P	С
	3	0	0	3
	3	U	U	3

INTERNET OF THINGS

Course Objectives:

- To learn and understand elements of IoTsystem.
- Acquire knowledge about various protocols ofIoT.
- To learn and understand design principles and capabilities of IoT.

UNIT I: Introduction to IoT

Introduction to IoT, Architectural Overview, Design principles and needed capabilities, Basics of Networking, M2M and IoT Technology Fundamentals- Devices andgateways, Data management, Business processes in IoT, Everything as a Service (XaaS), Role ofCloud in IoT, Security aspects inIoT.

UNIT II: Elements of IoT

Hardware Components- Computing- Arduino, Raspberry Pi, ARM Cortex-A class processor, Embedded Devices – ARM Cortex-M class processor, Arm Cortex-M0 Processor Architecture, Block Diagram, Cortex-M0 Processor Instruction Set, ARM and Thumb Instruction Set.

UNIT III: IoT Application Development

Communication, IoT Applications, Sensing, Actuation, I/O interfaces.

Software Components- Programming API's (using Python/Node.js/Arduino) for CommunicationProtocols-MQTT, ZigBee, CoAP, UDP, TCP, Bluetooth.

Bluetooth Smart Connectivity

Bluetooth overview, Bluetooth Key Versions, Bluetooth Low Energy (BLE) Protocol, Bluetooth, Low Energy Architecture, PSoC4 BLE architecture and Component Overview.

UNIT IV: Solution framework for IoT applications

Implementation of Device integration, Data acquisitionand integration, Device data storage-Unstructured data storage on cloud/local server, Authentication, authorization of devices.

UNIT V: IoT Case Studies

IoT case studies and mini projects based on Industrial automation, Transportation, Agriculture, Healthcare, HomeAutomation.

Text Books:

- 1. Raj Kamal, "Internet of Things: Architecture and Design Principles", 1st Edition, McGraw Hill Education, 2017.
- 2. The Definitive Guide to the ARM Cortex-M0 by JosephYiu,2011
- 3. Vijay Madisetti, ArshdeepBahga, Internet of Things, "A Hands on Approach", UniversityPress,2015.

References:

- 1. Cypress Semiconductor/PSoC4 BLE (Bluetooth Low Energy) Product TrainingModules.
- 2. Pethuru Raj and Anupama C. Raman, "The Internet of Things: EnablingTechnologies, Platforms, and Use Cases", CRC Press, 2017.

Course Outcomes:

The student will be able to:

- Understand internet of Things and its hardware and softwarecomponents.
- Interface I/O devices, sensors &communicationmodules.
- Remotely monitor data and controldevices.
- Design real time IoT basedapplications

III Year - II Semester		L	Т	P	С
		0	0	3	1.5
	VLSI LAB				

List of Experiments

PART (A): FPGA Level Implementation (Any Seven Experiments)

Note 1: The students need to develop Verilog /VHDLSource code, perform simulation using relevant simulator and analyze the obtained simulation results using necessary Synthesizer.

Note 2: All the experiments need to be implemented on the latest FPGA/CPLD Hardware in the Laboratory

1. Realization of Logic gates

Design and Implementation of the following:

- 2. 4-bit ripple carry and carry look ahead adder using behavioural, dataflow and structural modeling
- 3. a) 16:1 mux through 4:1 mux
- b) 3:8 decoder realization through 2:4 decoder
- 4. 8:3 encoder
- 5. 8-bit parity generator and checker
- 6. Flip-Flops
- 7. 8-bit synchronous up-down counter
- 8. 4-bit sequence detector through Mealy and Moore state machines.

EDA Tools/Hardware Required:

- 1. EDA Tool that supports FPGA programming including Xilinx Vivado /Altera (Intel)/ Cypress/Equivalent Industry standard tool along with corresponding FPGA hardware.
- 2. Desktop computer with appropriate Operating System that supports the EDA tools.

PART (B): Back-end Level Design and Implementation (Any Five Experiments)

Note: The students need to design the following experiments at schematic level using CMOS logic and verify the functionality. Further students need to draw the corresponding layout and verify the functionality including parasites. Available state of the art technology libraries can be used while simulating the designs using Industry standard EDA Tools.

Design and Implementation of the following

- a. Universal Gates
- b. An Inverter
- 2. Full Adder
- 3. Full Subtractor

- 4. Decoder
- 5. D-Flip-flop

EDA Tools/Hardware Required:

- Mentor Graphics Software / Cadence/Synopsys/Tanner or Equivalent Industry Standard/CAD Tool.
- Desktop computer with appropriate Operating System that supports the EDA tools.

III Year - II Semester	L	Т	Р	С	
		0	0	3	1.5

DIGITAL SIGNAL PROCESSING LAB

(Note: Students have to perform at least FOUR experiments from each part.)

PART-A

List of the Experiments

- 1. Generation of DTsignals.
- 2. Verify the Linear Convolution of two DT signals
 - a) UsingMATLAB
 - b) Using Code ComposerStudio(CCS)
- 3. Verify the Circular Convolution of two DTsignals
 - a) UsingMATLAB
 - b) Using Code ComposerStudio(CCS)
- 4. Find the sum of DT sinusoidalsignals.
- 5. Computation of Discrete Fourier Transform (DFT) and Inverse DiscreteFourier Transform(IDFT)
 - a) UsingMATLAB
 - b) Using Code ComposerStudio(CCS)
- 6. Transfer Function Stability Analysis: using pole-zero plot, bode plot and Nyquist plot.

PART-B

Following Experiments are to be done using a TI DSP Starter Kit.

- 7. Generation of a sinusoidal signal.
- 8. Linear and circular convolution of DTsequences.
- 9. Compute N-point DFT of a given DTsequence.
- 10. Design and implementation of FIRfilters.
- 11. Design and implementation of IIR filters.

PART-C

Following Experiments are to be done using Cypress FM4 Starter Kit.

- 12. Verification of samplingtheorem.
- 13. Implementation of FFTalgorithm.
- 14. Implementation of FIR filters.
- 15. Implementation of IIR filters.

III Year - II Semester		L	Т	Р	С
		3	0	0	0
	Intellectual Property Rights (IPR) & Pate	nts			

UNIT I

Introduction to Intellectual Property Rights (IPR): Concept of Property - Introduction to IPR – International Instruments and IPR - WIPO - TRIPS – WTO -Laws Relating to IPR - IPR Tool Kit - Protection and Regulation - Copyrights and Neighboring Rights – Industrial Property – Patents - Agencies for IPR Registration – Traditional Knowledge –Emerging Areas of IPR - Layout Designs and Integrated Circuits – Use and Misuse of Intellectual PropertyRights.

UNIT II

Copyrights and Neighboring Rights: Introduction to Copyrights – Principles of Copyright Protection – Law Relating to Copyrights - Subject Matters of Copyright – Copyright Ownership – Transfer and Duration – Right to Prepare Derivative Works –Rights of Distribution – Rights of Performers – Copyright Registration – Limitations – Infringement of Copyright – Relief and Remedy – Case Law - Semiconductor Chip ProtectionAct.

UNIT III

Patents: Introduction to Patents - Laws Relating to Patents in India – Patent Requirements – Product Patent and Process Patent - Patent Search - Patent Registration and Granting of Patent -Exclusive Rights – Limitations - Ownership and Transfer — Revocation of Patent – Patent Appellate Board - Infringement of Patent – Compulsory Licensing — Patent Cooperation Treaty – New developments in Patents – Software Protection and Computer relatedInnovations

UNIT IV

Trademarks: Introduction to Trademarks – Laws Relating to Trademarks – Functions of Trademark – Distinction between Trademark and Property Mark – Marks Covered under Trademark Law - Trade Mark Registration – Trade Mark Maintenance – Transfer of rights - Deceptive Similarities

Likelihood of Confusion - Dilution of Ownership – Trademarks Claims and Infringement – Remedies – Passing Off Action.

UNIT V

Trade Secrets & Cyber Law and Cyber Crime: Introduction to Trade Secrets – General Principles - Laws Relating to Trade Secrets–

Maintaining Trade Secret – Physical Security – Employee Access Limitation – Employee Confidentiality Agreements – Breach of Contract –Law of Unfair Competition – Trade Secret Litigation – Applying State Law.

Cyber Law – Information Technology Act 2000 - Protection of Online and Computer Transactions –

E-commerce - Data Security - Authentication and Confidentiality - Privacy - Digital Signatures

– Certifying Authorities - Cyber Crimes - Prevention and Punishment – Liability of Network Providers.

References:

- 1) Intellectual Property Rights (Patents & Cyber Law), Dr. A. Srinivas. Oxford University Press, NewDelhi.
- 2) Deborah E.Bouchoux: Intellectual Property, Cengage Learning, NewDelhi.
- 3) PrabhuddhaGanguli: Intellectual Property Rights, Tata Mc-Graw –Hill, NewDelhi
- 4) Richard Stim: Intellectual Property, Cengage Learning, NewDelhi.
- 5) Kompal Bansal & Parishit Bansal Fundamentals of IPR for Engineers, B. S. Publications (Press).
- 6) Cyber Law Texts & Cases, South-Western's Special TopicsCollections.
- 7) R.Radha Krishnan, S.Balasubramanian: Intellectual Property Rights, Excel Books. New Delhi.
- 8) M.Ashok Kumar and MohdIqbal Ali: Intellectual Property Rights, SerialsPub.

Course Outcomes:

- IPR Laws and patents pave the way for innovative ideas which are instrumental for inventions to seekPatents
- Student get an insight on Copyrights, Patents and Software patents which are instrumental for furtheradvancements
- advanced Technical and Scientific disciplines
- Imparting IPR protections and regulations for further advancement, so that the students can familiarize with the latest developments

IV Year - I Semester	L	Т	Р	С
	3	0	0	3

MICROWAVE and OPTICAL COMMUNICATION ENGINEERING

Course Objectives:

The student will able to

- Understand fundamental characteristics of waveguides and Micro strip lines through electromagnetic fieldanalysis.
- Understand the basic properties of waveguide components and Ferrite materials composition
- Understand the function, design, and integration of the major microwave components oscillators, poweramplifier.
- Understand a Microwave test bench setup formeasurements.

UNIT I

MICROWAVE TUBES (Qualitative treatment only): Cavities, Re-entrant Cavities, Two Cavity Klystrons-Structure, Velocity Modulation and Bunching process, Reflex Klystrons-Structure, principle of working.

HELIX TWTS: Significance, Types and Characteristics of Slow Wave Structures; Structure of TWT.

M-TYPE TUBES

Introduction, Cross-field effects, Magnetrons – 8-Cavity Cylindrical Travelling Wave Magnetron.

MICROWAVE SOLID STATE DEVICES: Introduction, Classification, Applications. TEDs – Introduction, Gunn Diode – Principle, RWH Theory, Characteristics, LSA Mode of operation

UNIT II

WAVEGUIDE COMPONENTS AND APPLICATIONS- I (Qualitative treatment only): Waveguide Attenuators – Resistive Card, Rotary Vane types, Scattering matrix parameters: Definition, Properties, Salient Features -S- parameters of two port, three port, four port networks. 2 Hole, Bethe Holetypes.

UNIT III Over view of optical fiber communication, Total Internal Reflection, Numerical Aperture, Graded index fibers, Cut off wavelength.

OPTICAL FIBER CONNECTORS-Connector types, Single mode fiber connectors, Connector return loss, Fiber Splicing- Splicing techniques, Splicing single mode fibers, Multimode fiber joints, single mode fiber joints.

UNIT I V

OPTICAL SOURCES and Detectors: Qualitative treatment, Structures, Materials, Quantum efficiency, Physical principles and comparison of: Optical sources and detectors, Related problems.

Optical system design- Point to point links – Component Choice and considerations, Link power budget, Line coding in Optical links, WDM, Necessity, Principles, Eye pattern.

UNIT -V: MEASUREMENTS:

a. MICROWAVE MEASUREMENTS: Description Of Microwave Bench- Different Blocks, Microwave Power Measurement- Bolometer Method. Measurement of Attenuation by Reflection Method, VSWR, ImpedanceMeasurement

b. OPTICAL MEASUREMENTS: OTDR, Attenuation, DetectorCharacteristics

TEXT BOOKS :

- 1. Microwave Devices and Circuits Samuel Y. Liao, PHI, 3rdEdition, 1994.
- 2. Foundations for Microwave Engineering R.E. Collin, IEEE Press, John Wiley,2nd Edition,2002.
- 3. Optical Fiber Communications Gerd Keiser, Mc Graw-Hill International edition, 3rd Edition, 2000.

REFERENCES:

- 1. Microwave Engineering- Annapurna Das and Sisir K.Das, Mc Graw HillEducation, 3rdEdition,2014.
- 2. Microwave Engineering G S N Raju , I K International Publishing House Pvt. Limited, 2008.
- 3. Fiber Optic Communication Systems Govind P. Agarwal, John Wiley, 3rd Ediition, 2004.

Course Outcomes: After going through this course the student will be able to

- Design different modes in waveguidestructures
- Calculate S-matrix for various waveguide components and splitting the microwave energy in a desired direction
- Distinguish between Microwave tubes and Solid State Devices, calculation of efficiency devices.
- Measure various microwave parameters using a Microwave testbench

IV Year - I Semester	L	Τ	Р	С
	3	0	0	3

DATA COMMUNICATIONS & COMPUTER NETWORKS

Course Objectives:

- To introduce the Fundamentals of data communicationnetworks
- To demonstrate the Functions of various protocols of Data linklayer.
- To demonstrate Functioning of various Routingprotocols.
- To introduce the Functions of various Transport layer protocols.
- To understand the significance of application layerprotocols

UNIT I:

Introduction to Data Communications: Components, Data Representation, Data Flow, Networks-Distributed Processing, Network Criteria, Physical Structures, Network Models, Categories of Networks Interconnection of Networks, The Internet - A Brief History, The Internet Today, Protocol and Standards - Protocols, Standards, Standards Organizations, Internet Standards. Network Models, Layered Tasks, OSI model, Layers in OSI model, TCP/IP Protocol Suite, Addressing Introduction, Wireless Links and Network Characteristics, WiFi: 802.11 Wireless LANs -The 802.11 Architecture,

UNIT II:

Data Link Layer: Links, Access Networks, and LANs- Introduction to the Link Layer, The Services Provided by the Link Layer, Types of errors, Redundancy, Detection vs Correction, Forward error correction Versus Retransmission Error-Detection and Correction Techniques, Parity Checks, Check summing Methods, Cyclic Redundancy Check (CRC), Framing, Flow Control and Error Control protocols, Noisy less Channels and Noisy Channels, HDLC, Multiple Access Protocols, Random Access, ALOHA, Controlled access, Channelization Protocols. 802.11 MAC Protocol, IEEE 802.11 Frame.

UNIT III:

The Network Layer: Introduction, Forwarding and Routing, Network Service Models, Virtual Circuit and Datagram Networks-Virtual-Circuit Networks, Datagram Networks, Origins of VC and Datagram Networks, Inside a Router-Input Processing, Switching, Output Processing, Queuing, The Routing Control Plane, The Internet Protocol(IP):Forwarding and Addressing in the Internet-Datagram format, Ipv4 Addressing, Internet Control Message Protocol(ICMP), IPv6

UNIT IV:

Transport Layer: Introduction and Transport Layer Services : Relationship Between Transport and Network Layers, Overview of the Transport Layer in the Internet, Multiplexing and Demultiplexing, Connectionless Transport: UDP -UDP Segment Structure, UDP Checksum, Principles of Reliable Data Transfer-Building a Reliable Data Transfer Protocol, Pipelined Reliable Data Transfer Protocols, Go-Back-N(GBN), Selective Repeat(SR), Connection Oriented Transport: TCP - The TCP Connection, TCP Segment Structure, Round-Trip Time Estimation and Timeout, Reliable Data Transfer, Flow Control, TCP Connection Management, Principles of Congestion Control - The Cause and the Costs of Congestion, Approaches to CongestionControl

UNIT V:

Application Layer: Principles of Networking Applications – Network Application Architectures, Processes Communicating, Transport Services Available to Applications, Transport Services Provided by the File Transfer: FTP,- FTP Commands and Replies, Electronic Mail in the Internet-STMP, Comparison with HTTP, DNS-The Internet's Directory Service – Service Provided by DNS, Overview of How DNS Works, DNS Records and messages.

TEXT BOOKS:

- 1. Computer Networking A Top-Down Approach Kurose James F, Keith W, 6thEdition , Pearson, 2017.
- 2. Data Communications and Networking Behrouz A.Forouzan4th Edition McGraw Hill Education, 2017.

REFERENCES:

- 1. Data communication and Networks Bhusan Trivedi, Oxford university press, 2016
- 2. Computer Networks -- Andrew S Tanenbaum, 4th Edition, PearsonEducation, 2003.
- 3. Understanding Communications and Networks, 3rdEdition, W.A.Shay, CengageLearning, 2003.

Course Outcomes:

Upon completing this course, the student will be able to

- Know the Categories and functions of various Data communication Networks
- Design and analyze various error detectiontechniques.
- Demonstrate the mechanism of routing the data in networklayer
- Know the significance of various Flow control and Congestion controlMechanisms
- Know the Functioning of various Application layerProtocols.

IV Year - I Semester	L	Т	P	С
	3	0	0	3
	5	U	U	5

DIGITAL IMAGE and VIDEO PROCESSING

Course Objectives:

- To study the image fundamentals and mathematical transforms necessary for image Processing.
- To study the image enhancement techniques
- To study image restoration procedures.
- To study the image compression procedures.
- To study the basics of Video processing and 2-D Motion estimation

UNIT I:

Fundamentals of Image Processing and Image Transforms:

Introduction, Image sampling, Quantization, Resolution, Image file formats, Elements of image processing system, Applications of Digital image processing. Introduction, Need for transform, image transforms, Fourier transform, 2 D Discrete Fourier transform and its transforms, Importance of phase, Walsh transform, Hadamard transform, Haar transform, slant transform Discrete cosine transform, KL transform, singular value decomposition, comparison of different image transforms.

UNIT II:

Image Enhancement:

Spatial domain methods: point processing techniques, Histogram processing, Fundamentals of Spatial filtering, smoothing spatial filters, sharpening spatial filters. Frequency domain methods: Basics of filtering in frequency domain, image smoothing, image sharpening, Selective filtering.

Image Restoration:

Introduction to Image restoration, Image degradation, Types of image blur, Classification of image restoration techniques, Image restoration model, Linear and Nonlinear image restoration techniques, Blind de-convolution.

UNIT III:

Image Segmentation:

Introduction to image segmentation, Point, Line and Edge Detection, Region based segmentation., Classification of segmentation techniques, Region approach to image segmentation, clustering techniques, Image segmentation based on thresholding, Edge based segmentation, Edge detection and linking, Hough transform.

Image Compression:

Introduction, Need for image compression, Redundancy in images, Classification of redundancy in images, image compression scheme, Classification of image compression schemes, Fundamentals of information theory, Run length coding, Shannon – Fano coding, Huffman coding, Arithmetic coding, Predictive coding, Transformed based compression, Image

compression standard, Wavelet-based image compression, JPEG Standards.

UNIT IV:

Basic Steps of Video Processing:

Analog Video, Digital Video. Time-Varying Image Formation models: Three-Dimensional Motion Models, Geometric Image Formation, Photometric Image Formation, Sampling of Video signals, filtering operations.

UNIT V:

Motion Estimation: Optical flow, General Methodologies, Pixel Based Motion Estimation, Block-Matching Algorithm, Mesh based Motion Estimation, Global Motion Estimation, Region based Motion Estimation, Multi resolution motion estimation, Waveform based coding, Block based transform coding, Predictive coding, Application of motion estimation in Videocoding.

TEXT BOOKS

- 1. Digital Image Processing Gonzaleze and Woods, 3rdEd,Pearson,2008.
- 2. Digital Video Processing M. Tekalp, Prentice Hall International.2ndEd.2015.

REFERENCE BOOKS

- 1. Digital Image Processing S.Jayaraman, S.Esakkirajan, T.Veera Kumar TMH,2009.
- 2. Video Processing and Communication Yao Wang, JoemOstermann and Ya–quin Zhang.1st Ed., PH Int,2017
- 3. Digital Image Processing and Analysis-Human and Computer Vision Applicationwith CVIP Tools ScotteUmbaugh, 2nd Ed, CRC Press,2011.

Course Outcomes:

- Defining the digital image, representation of digital image, importance of image resolution, applications in imageprocessing.
- Know the advantages of representation of digital images in transform domain, application of various imagetransforms.
- Know how an image can be enhanced by using histogram techniques, filtering techniques etc
- Understand image degradation, image restoration techniques using spatial filtersand frequencydomain
- Know the detection of point, line and edges in images, edge linking through local processing, globalprocessing.
- Understand the redundancy in images, various image compressiontechniques.
- Know the video technology from analog color TV systems to digital video systems, how video signal is sampled and filtering operations in videoprocessing.
- Know the general methodologies for 2D motion estimation, various coding used invideo processing.

IV Year - I Semester		L	Т	Р	С
		3	0	0	3
СОМ	UNICATION STANDARDS and PRO	госо	LS		
	(Professional Elective 3)				

Objective:

• Acquire knowledge about transferring data into cloud using variousWired/Wireless communicationtechnologies.

Prerequisites:

Basic knowledge on Digital numbering system; Micro Controller Peripheral Programming, interfacing different types of sensors using I2C,SPI, UART ; wired and wireless communications.

Unit-I:

Introduction to Communication and Networking : Communications, Signal Types and its characteristics (Analog/Digital), Data Transmission Types (Serial/Parallel), Communication Techniques (Asynchronous, Synchronous),Data Transmission Modes (Simplex, Half/Full Duplex), Network Topologies (Star, Ring, Mesh, Point to Point, Tree, Bus, Daisy chain, Multi drop) and its applications, Modulation need and types.

Unit-II:

OSI Layers: Communication Layers and its applications, Communication media (Twisted Pair, Coaxial, Fiber Optics), Introduction to Errors (Error types, Detection, Correction) and Flow Control and its applications.

Unit-III:

Wired Communication Protocols: Ethernet (Types, Socket, MAC, IP, ARP, ICMP, TCP, UDP, DHCP), CAN, Mod-bus(RTU, ASCII), UART (RS485,RS232), OFC and Advantages, Disadvantages and its applications, Introduction to Dial up Modems, Leased line modems.

Unit-IV:

Wireless Communication Protocols: Zigbee, Bluetooth, Wi-Fi, GPRS, GSM, NFC, IR, Satellite Communication. Advantages, Disadvantages and its applications.

Unit-V:

Network Types: Introduction to LAN, WAN, PAN, Internet and Intranet, sensor networks (wired/wireless) and its applications.

Network Security :Introduction to NAT, PAT, DNS, Network Routing algorithms, Introduction to Switch, Hub, Bridges and its working, Network Security and Introduction to Firewall and its applications.

Text books:

- 1. Introduction to data communication and networking by Wayne Tomasi, PearsonPrentice Hall,2005
- 2. Introduction to data communication and networking by Behrouz Forouzan ,4thEdition McGraw HillEducation,2017.
- 3. Basics of data communications by WilliamStallings.

Reference books:

- 1. Basics of computer networking by Thomas Robertazzi Stony BrookUniversity, 2011
- 2. Wireless Networking Absolute Beginner's Guide by MichaelMiller:
- 3. Designing and Deploying 802.11n Wireless Networks by Jim Geier 2nd Edition, Kindle Edition.
- 4. CAN System Engineering from Theory to Practical Applications,2nd Edition,Springer,2013

Course Outcomes:

- Able to develop sensornetworks
- Able to communicate data via Wired/Wirelesscommunication
- Configure and test communicationtechnologies

IV Year - I Semester	L	Т	P	С
	3	0	0	3
	SIGN			
	ve 3)			

Course Objectives:

The student will be able to

- Understand the behavior of MOS Devices and Small-Signal & Large-Signal Modeling of MOS Transistor and AnalogSub-Circuits.
- Learn and understand CMOS Amplifiers like Differential Amplifiers, Cascode Amplifiers, Output Amplifiers, and OperationalAmplifiers.
- Design and Develop the Analog CMOS Circuits for different Analogoperations.
- Learn and understandthe concepts of Open-Loop Comparators and Different Types of Oscillators like Ring Oscillator, LC Oscillatoretc.

UNIT -I:

MOS Devices and Modelling: The MOS Transistor, Passive Components- Capacitor & Resistor, Integrated circuit Layout, CMOS Device Modelling - Simple MOS Large-Signal Model, Other Model Parameters, Small-Signal Model for the MOS Transistor, Computer Simulation Models, Sub-threshold MOSModel.

UNIT -II:

Analog CMOS Sub-Circuits: MOS Switch, MOS Diode, MOS Active Resistor, Current Sinks and Sources, Current Mirrors-Current mirror with Beta Helper, Degeneration, Cascode current Mirror and Wilson Current Mirror, Current and Voltage References, Band gap Reference.

UNIT -III:

CMOS Amplifiers: Inverters, Differential Amplifiers, Cascode Amplifiers, Current Amplifiers, Output Amplifiers, High Gain Amplifiers Architectures.

CMOS Operational Amplifiers: Design of CMOS Op Amps, Compensation of Op Amps, Design of Two-Stage Op Amps, Power- Supply Rejection Ratio of Two-Stage Op Amps, Cascode Op Amps, Measurement Techniques of OP Amp.

UNIT -IV:

Comparators: Characterization of Comparator, Two-Stage, Open-Loop Comparators, Other Open-Loop Comparators, Improving the Performance of Open-Loop Comparators, Discrete-Time Comparators.

UNIT -V:

Oscillators & Phase-Locked Loops: General Considerations, Ring Oscillators, LC Oscillators, Voltage Controlled Oscillators.

Simple PLL, Charge Pump PLLs, Non-Ideal Effects in PLLs, Delay Locked Loops, Applications.

TEXT BOOKS:

- 1. Design of Analog CMOS Integrated Circuits- Behzad Razavi, TMH Edition, SecondEdition.
- 2. CMOS Analog Circuit Design Philip E. Allen and Douglas R. Holberg, Oxford University Press, International Second Edition/Indian Edition,2010.

REFERENCES:

- 1. Analysis and Design of Analog Integrated Circuits- Paul R. Gray, Paul J. Hurst, S. Lewis and R. G. Meyer, Wiley India, Fifth Edition, 2010.
- 2. Analog Integrated Circuit Design- David A.Johns, Ken Martin, Wiley Student Edn, 2013.

Course Outcomes:

After going through this course, the student will be able to

- Model and simulate different MOS Devices using small signalModel.
- Design and analyze any Analog Circuits in real timeapplications.
- Apply the concepts Analog Circuit Design to develop various Applications in RealTime.
- Analyze and comparedifferentOpen-Loop Comparators andOscillators.

IV Year - I Semester	L	Τ	Р	С
	3	0	0	3
SMART SEN	SORS			
(Professional El	ective 3)			

OBJECTIVE:

To make student to acquire the knowledge on types of sensors/transducers, working principles, selection procedure, applications of sensing systems

UNIT – I

Introduction to Measurement: Measurement units, applications, elements, choosing appropriate measuring instruments. Instrument Types and Performance Characteristics: Review of instrument types, Static characteristics, dynamiccharacteristics

Error during measurement process: Sources of systematic error, reduction and quantification of systematic errors, random errors, aggregation of measurement system errors.

Calibration: Calibration of measuring instruments, Primary calibration, secondary calibration and field calibration. Calibration methods for different parameters (temperature, pressure, humidity, flow...etc.). Automatic Calibration mechanisms.

UNIT – II

Temperature Sensors: Thermo-resistive, Resistance Temperature Detectors, Silicon Resistive, Thermistors, Semiconductor, Optical, Acoustic, Piezoelectric

Humidity and Moisture Sensors: Capacitive, Electrical Conductivity, Thermal Conductivity, Optical Hygrometer, Time Domain Reflectometer.

Pressure and Force Sensors: Mercury Pressure, Bellows, Membranes, and Thin Plates,

Piezoresistive, Capacitive, Optoelectronic, Vacuum, Strain Gauges, Tactile, Piezoelectric Force **Applications:** Case studies in processing industries, indoor environment monitoring in offices, cold storages

UNIT – III

Occupancy and Motion Detectors: Ultrasonic, Microwave Motion, Capacitive Occupancy, Visible and Near-Infrared Light, Far-Infrared Motion, PIR Motion, Position, Displacement, and Level Sensors: Potentiometric, Gravitational, Capacitive, Inductive and Magnetic, Optical, Ultrasonic, Radar

Velocity and Acceleration Sensors: Capacitive Accelerometers, Piezoresistive Accelerometers, Piezoelectric Accelerometers, Thermal Accelerometers, Heated-Plate Accelerometer, Heated-Gas Accelerometer, Gyroscopes, Piezoelectric Cables

Applications: Case studies in manufacturing industries, robotics

$\mathbf{UNIT} - \mathbf{IV}$

Flow Sensors: Pressure Gradient Technique, Thermal Transport, Ultrasonic, Electromagnetic, and Micro flow, Coriolis Mass Flow, Acoustic Sensors: Resistive Microphones, Fiber-Optic, Piezoelectric, Solid-State microphone, Light & Radiation Sensors: Photodiodes, Phototransistor, Photo resistors, Thermal detectors

Chemical Sensors: Metal-Oxide Chemical, ChemFET, Electro-chemical, Potentiometric, Conduct metric, Amperometric, Optical Chemical, Mass Detector

Applications: Case studies in processing industries, oil and gas industries, water SCADA, pharmaceutical industries

UNIT – V

Introduction to wireless sensor networks, Challenges for wireless sensor networks, Applications for wireless sensor networks, enabling technologies for wireless sensor networks.

Single node architecture – Hardware components, Energy consumption of Sensor nodes (only Operation states with different power consumption, Relationship between computation and communication, Power consumption of sensor and actuators is included), Deployment environments

Sensor Network Architecture - Sensor Network Scenarios, Optimization goals and figures of merit, Design principles of WSN, Service interfaces of WSNs, Gateway-concepts.

TEXT BOOKS:

- 1. Measurement and Instrumentation Principles Morris, AlanS
- 2. An Introduction to Error Analysis by John R.Taylor
- 3. Sensor Technology Handbook, John S.Wilson
- 4. Holger Karl & Andreas Willig, "Protocols and Architectures for Wireless Sensor Networks" John-Wiley, First-Edition-2014.

REFERENCE BOOKS

- 1. Mechanical Measurements Beckwith, Marangoni, Lienhard
- 2. Measurement of Systems Application and design Earnest O.Doeblin
- 3. Electronic Instrumentation and Measurement Technique Albert DHelfrick
- 4. Kazem Sohraby, Daniel Minoli, & Taieb Znati, "Wireless Sensor Networks- Technology, Protocols, AndApplications", John Wiley, 2007.

Course Outcomes : The student will be able to

- Understand measuring parameters, measuring systems, effects of environment, characteristics and parameters to be considered for designing an instrument
- Understand different types of sensors/transducers, working principles, selection procedure, applications of sensingsystems
- Understand Challenges and applications of sensors and sensornetworks
- Select a sensor/sensing system for arequirement
- Test, install and collect the data from a group ofsensors.
- Derive sensor-based solution for different applications.

IV Year - I Semester		L	Τ	P	С				
IV I cal - I Semester		3	0	0	3				
Al	ADVANCED DIGITAL SIGNAL PROCESSING (Professional Elective 3)								

Course Objectives:

The main objectives of the course are

- To study about discrete time systems and to learn about FFTalgorithms.
- To study the design techniques for FIR and IIR digitalfilters
- To study the finite word length effects in signalprocessing
- To study the properties of random signal, Multirate digital signal processing and about QMFfilters

UNIT –I: Review of DFT, FFT, IIR Filters and FIR Filters: Introduction to filter structures (IIR & FIR). Implementation of Digital Filters, specifically 2nd Order Narrow Band Filter and 1st Order All Pass Filter. Frequency sampling structures of FIR, Lattice structures, Forward prediction error, Back ward prediction error, Reflection coefficients for lattice realization, Implementation of lattice structures for IIR filters, Advantages of lattice structures.

UNIT - II: Non-Parametric Methods: Estimation of spectra from finite duration observation of signals, Nonparametric Methods: Bartlett, Welch & Blackman-Tukey methods, Comparison of all Non-Parametricmethods

UNIT – **III:** Parametric Methods: Autocorrelation & Its Properties, Relation between auto correlation & model parameters, AR Models – Yule-Walker & Burg Methods, MA & ARMA models for power spectrum estimation, Finite word length effect in IIR digital Filters – Finite word-length effects in FFT algorithms.

UNIT –**IV**: Multi Rate Signal Processing: Introduction, Decimation by a factor D, Interpolation by a factor I, Sampling rate conversion by a rational factor I/D, Multistage Implementation of Sampling Rate Conversion, Filter design & Implementation for sampling rate conversion. Examples of up-sampling using an All Pass Filter.

UNIT –V: Applications of Multi Rate Signal Processing: Design of Phase Shifters, Interfacing of Digital Systems with Different Sampling Rates, Implementation of Narrow Band Low Pass Filters, Implementation of Digital Filter Banks, Sub-band Coding of Speech Signals, Quadrature Mirror Filters, Transmultiplexers, Over Sampling A/D and D/AConversion.

TEXT BOOKS:

- 1. J.G.Proakis & D. G. Manolakis, "Digital Signal Processing: Principles, Algorithms & Applications", 4th Edition, PHI, 2008.
- 2. Alan V Oppenheim & Ronald W Schaffer, "Discrete Time signal processing ", PHI. 2nd Edition, 1999.
- 3. Emmanuel C. Ifeacher, Barrie. W. Jervis, "DSP A Practical Approach", 2nd Edition, PearsonEducation, 2000.

REFERENCE BOOKS:

- 1. S. M. Kay, "Modern spectral Estimation: Theory & Application ", 1988, PHI.
- 2. P.P.Vaidyanathan, "Multi Rate Systems and Filter Banks", PearsonEducation.
- 3. Kaluri V. Rangarao, Ranjan K. Mallik, "Digital Signal Processing: A Practitioner's Approach", ISBN: 978-0-470-01769-2, 210 pages, November 2006 JohnWeley.
- 4. S.Salivahanan, A.Vallavaraj, C.Gnanapriya, "Digital Signal Processing", 2000, TMH

Course Outcomes:

On completion of the course, students will be able to:

- Comprehend the DFT, FFT and IIRfilters.
- To study the modern digital signal processing algorithms and applications.
- Have an in-depth knowledge of use of digital systems in real timeapplications
- Acquire the basics of multi rate digital signal processing and apply the algorithms for wide area of recentapplications.
- Analyze the power spectrum estimation and Comprehend the Finite word length effects in Fixed point DSPSystems.

IV Year - I Semester		L	Τ	P	С
		3	0	0	3
	AUGMENTED REALITY				
	(Professional Elective 3)				

OBJECTIVE:

The course is designed to impart the fundamentals of augmented reality (AR), and teach how to build an AR experience.

UNIT – I:

Introduction to Augmented Reality: Definition and Scope, a brief history of Augmented Reality, Examples, Other related fields: Virtual Reality, Mixed Reality Continuum, Ubiquitous Computing.

Understanding Virtual Space: Defining visual space and content, defining position and orientation in three dimensions, navigation

UNIT – II:

Understanding human senses and their relationship to Output/Input Devices: The mechanics of sight – visual pathway, spatial vision and depth cues, The mechanics of hearing, mechanics of feeling, Multimodal displays, Visual perception, Requirements and Characteristics, Spatial display model, Visual displays

UNIT – III:

Sensors for tracking position, orientation and motion – Tracking, calibration and registration, coordinate systems, characteristics of tracking technology, Stationary tracking systems, Mobile sensors, optical tracking, sensor fusion, Computer vision for augmented reality – market tracking, multiple-camera infrared tracking, natural feature tracking by detection, incremental tracking, simultaneous localization and mapping, outdoortracking

Devices to enable navigation and interaction -2D versus 3D interaction and navigation, the importance of a manual interface, hand and gesture tracking, whole body tracking, gaming and entertainment interfaces, navigating with mind.

UNIT – IV:

Software architectures – AR application requirements, software engineering requirements, Distributed object systems, dataflow, scene graphs, developer support.

Applications of Augmented and Virtual Reality: Gaming and Entertainment, Architecture and construction, Health and medicine, Aerospace and defence, education, information control and big data visualization, Tele-robotics and telepresence.

$\mathbf{UNIT} - \mathbf{V}$:

Human factors, legal and social considerations – human factor considerations, legal and social considerations, The future of AR – what may drive business cases, an AR developer's wish list, taking AR outdoors, interfacing with smart objects, confluence of VR and AR, augmented humans, AR as dramatic medium, AR as social computing platform.

TEXTBOOKS:

- 1. Augmented Reality Principles and Practice, Dieter Schmalstieg and Tobias Höllerer, 1st Edition, Addison-Wesley
- 2. Practical Augmented Reality A guide to the technologies, applications, and human factors for AR and VR, Steve Aukstakalnis, 1st Edition,Addison-Wesley
- Understanding Augmented Reality, Concepts and Applications, Alan B. Craig, 1st Edition, Morgan Kaufman

REFERENCE BOOKS:

- 1. Handbook of Virtual Environments: Design, Implementation, and Applications, Kelly S. Hale and Kay M. Stanney, 2nd Edition, CRCPress
- 2. Designing Virtual Systems: The Structured Approach, Gerard Jounghyun Kim, Springer
- 3. Spatial Augmented Reality: Merging Real and Virtual Worlds, Oliver Bimber and Ramesh Raskar, 1st Edition, A K Peters/CRC press.

Course Outcomes:

At the end of the course, students will

- Understand the basics of AugmentedReality
- Understand human senses and their relationship todevices
- Understand various application scenarios of AR
- Understand softwarearchitecture

IV Year - I Semester		L	Т	P	С
		3	0	0	3
	SOFTWARERADIO				
	(Professional Elective4)				

Pre-requisite(s): Basic knowledge of signal processing, concepts in wireless Communication and networks.

Course Objectives: This course enables the students to:

- Understand the basic components of software definedradio.
- Understand the distortion parameters and nonlinear Distortion in TransmittedSignals.
- Calculate power requirement in power amplifier forSDR.
- Understand Digital Pre-distortion Techniques for Linear/NonlinearDistortion.
- Appraise Digital Pre-distortionTechniques.

UNIT 1: Basic components of software defined radios, Software defined radio architectures Part A, Software defined radio architectures- Part B.

UNIT 2: Distortion parameters, Sources and metrics of distortion in a transceiver, Nonlinear distortion and nonlinearity specifications, Power amplifiers: Nonlinear Distortion in Transmitted Signals.

UNIT 3: Power amplifier Line-up for linearity & power requirement calculations, Linearization Techniques for nonlinear distortion in SDR.

UNIT 4: Predistortion Techniques for nonlinear distortion in SDR.

UNIT 5: Digital Predistortion Techniques for Linear/Nonlinear Distortion.

Textbook:

1. Jeffrey H. Reed "Software Radio: A Modern Approach to radio Engineering", Pearson EducationAsia,2002

References:

- 1. Sanjay Kumar, "Wireless Communication the Fundamental and AdvancedConcepts" River Publishers, Denmark, 2015 (Indianreprint)
- 2. <u>https://onlinecourses.nptel.ac.in/noc18_ec01/preview</u>.

Course Outcomes: After the completion of this course, students will be to:

- Able to analyze the basic components of software definedradio.
- Demonstrate understanding about distortion parameters and nonlinear Distortionin TransmittedSignals
- Able to calculate power requirement in power amplifier for SDR
- Demonstrate understanding about Digital Pre-distortion Techniques forLinear/Nonlinear Distortion
- Design and analyze the various algorithms used for software definedradio.

IV Year - I Semester		L	Т	Р	С
		3	0	0	3
	LOW POWER VLSI DESIGN				
	(Professional Elective 4)				

Course Objectives:

- Known the low power low voltage VLSIdesign
- Understand the impact of power onsystemperformances.
- Known about differentDesignapproaches.
- Identify suitable techniques to reduce power dissipation in combinational and sequential circuits.

UNIT –I:

Fundamentals: Need for Low Power Circuit Design, Sources of Power Dissipation – Switching Power Dissipation, Short Circuit Power Dissipation, Leakage Power Dissipation, Glitching Power Dissipation, Short Channel Effects –Drain Induced Barrier Lowering and Punch Through, Surface Scattering, Velocity Saturation, Impact Ionization, Hot ElectronEffect.

UNIT –II:

Supply Voltage Scaling for Low Power:Device Feature Size Scaling, Constant-Field Scaling, Constant-Voltage Scaling, Architectural-Level Approaches: Parallelism for Low Power, Pipelining for Low Power, Combining Parallelism with Pipelining, Voltage Scaling Using High-Level Transformations: Multilevel Voltage Scaling Challenges in MVS Voltage Scaling Interfaces, Static Timing Analysis Dynamic Voltage and Frequency Scaling

UNIT -III

Low-Power Design Approaches: Low-Power Design through Voltage Scaling – VTCMOS circuits, MTCMOS circuits, Architectural Level Approach –Pipelining and Parallel Processing Approaches.Power Gating, Clock Gating Versus Power Gating, Power-Gating Issues, Isolation Strategy, State Retention Strategy, Power-Gating Controller, Power Management, Combining DVFS and PowerManagement.

UNIT –IV:

Low-Voltage Low-Power Adders: Introduction, Standard Adder Cells, CMOS Adder's Architectures – Ripple Carry Adders, Carry Look- Ahead Adders, Carry Select Adders, Carry Save Adders, Low-Voltage Low-Power Design Techniques –Trends of Technology and Power Supply Voltage.

Low-Voltage Low-Power Multipliers: Introduction, Overview of Multiplication, Types of Multiplier Architectures, Braun Multiplier, Baugh- Wooley Multiplier, Introduction to Wallace Tree Multiplier.

UNIT –V:

Low-Voltage Low-Power Memories: Basics of ROM, Low-Power ROM Technology, Future Trend and Development of ROMs, Basics of SRAM, Memory Cell, Pre-charge and Equalization Circuit, Low-Power SRAM Technologies, Basics of DRAM, Self-Refresh Circuit, Future Trend and Development of DRAM.

TEXT BOOKS:

- 1. CMOS Digital Integrated Circuits Analysis and Design Sung-Mo Kang, Yusuf Leblebici, TMH, 2011.
- Low-Voltage, Low-Power VLSI Subsystems Kiat-Seng Yeo, Kaushik Roy, TMH ProfessionalEngineering,1st edition,2004

REFERENCE BOOKS:

- 1. Introduction to VLSI Systems: A Logic, Circuit and System Perspective Ming-BO Lin, CRCPress,2011
- 2. Low Power CMOS VLSI Circuit Design Kaushik Roy, Sharat C. Prasad, John Wiley & Sons,2000.
- 3. Practical Low Power Digital VLSI Design Gary K. Yeap, Kluwer Academic Press, 2002.
- 4. Leakage in Nanometer CMOS Technologies– Siva G. Narendran, Anatha Chandrakasan, Springer, 2005.

Course Outcomes:

Upon completing this course, the student will be able to

- Understand the need of Low power circuitdesign.
- Attain the knowledge of architecturalapproaches.
- Analyze and design Low-Voltage Low-Power combinational circuits.
- Known the design of Low-Voltage Low-PowerMemories

IV Year - I Semester		L	Т	P	С
		3	0	0	3
	EMBEDDED SYSTEMS				
	(Professional Elective 4)				

Course Objectives:

The main objectives of this course are given below:

- The basic concepts of an embedded system areintroduced.
- The various elements of embedded hardware and their design principles are explained.
- Different steps involved in the design and development of firmware for embedded systems iselaborated.
- Internals of Real-Time operating system and the fundamentals of RTOS based embedded firmware design is discussed.
- Fundamental issues in hardware software co-design were presented and explained.
- Familiarize with the different IDEs for firmware development for different family of processors/controllers and embedded operatingsystems.
- Embedded system implementation and testing tools are introduced and discussed.

UNIT-I

INTRODUCTION: Embedded system-Definition, history of embedded systems, classification of embedded systems, major application areas of embedded systems, purpose of embedded systems, the typical embedded system-core of the embedded system, Memory, Sensors and Actuators, Communication Interface, Embedded firmware, Characteristics of an embedded system, Quality attributes of embedded systems, Application-specific and Domain-Specific examples of an embedded system.

UNIT-II

EMBEDDED HARDWARE DESIGN: Analog and digital electronic components, I/O types and examples, Serial communication devices, Parallel device ports, Wireless devices, Timer and counting devices, Watchdog timer, Real time clock.

UNIT-III

EMBEDDED FIRMWARE DESIGN: Embedded Firmware design approaches, Embedded Firmware development languages, ISR concept, Interrupt sources, Interrupt servicing mechanism, Multiple interrupts, DMA, Device driver programming, Concepts of C versus Embedded C and Compiler versusCross-compiler.

UNIT-IV

REAL TIME OPERATING SYSTEM: Operating system basics, Types of operating systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task Scheduling, Threads, Processes and Scheduling, Task communication, Task synchronization.

HARDWARE SOFTWARE CO-DESIGN: Fundamental Issues in Hardware Software Co-Design, Computational models in embedded design, Hardware software Trade-offs, Integration of Hardware and Firmware.

UNIT-V:

EMBEDDED SYSTEM DEVELOPMENT, IMPLEMENTATION AND TESTING:The integrated development environment, Types of files generated on cross-compilation, Deassembler/Decompiler, Simulators, Emulators and Debugging, Target hardware debugging, Embedded Software development process and tools, Interpreters, Compilers and Linkers, Debugging tools, Quality assurance and testing of the design, Testing on host machine, Simulators, Laboratory Tools.

Text Books:

- 1. Embedded Systems Architecture- By Tammy Noergaard, Elsevier Publications, 2013.
- 2. Embedded Systems-By Shibu. K.V-Tata McGraw Hill Education Private Limited, 2013.

References:

- 1. Embedded System Design, Frank Vahid, Tony Givargis, John Wiley Publications, 2013.
- 2. Embedded Systems-Lyla B.Das-Pearson Publications, 2013.

Course Outcomes:

At the end of this course the student can able to:

- Understand the basic concepts of an embedded system and able to know an embedded system design approach to perform a specificfunction.
- The hardware components required for an embedded system and the design approach of an embeddedhardware.
- The various embedded firmware design approaches on embeddedenvironment.
- Understand how to integrate hardware and firmware of an embedded system using real time operating system.

IV Year - I Semester		L	Т	Р	С
		3	0	0	3
	RS and ARCHITECTUR	RES			
	ssional Elective 4)				

Course Objectives:

- To recall the various techniques of digital signalprocessing.
- To introduce the architectural features of programmable DSP Processors of Texas Instruments (TI) and Analog devices(AD).
- To understanding the practical examples of DSP Processorarchitectures.
- To develop programming knowledge by using Instruction set of DSPProcessors.
- To know the interfacing techniques to I/O devices and memory.

UNIT-I:

Introduction to Digital Signal Processing

Introduction, a Digital signal-processing system, the sampling process, discrete time sequences, Discrete Fourier Transform (DFT) and Fast Fourier Transform (FFT), Linear time-invariant systems, Digital filters, Decimation and interpolation.

Computational Accuracy in DSPImplementations

Number formats for signals and coefficients in DSP systems, Dynamic Range and Precision, Sources of error in DSP implementations, A/D Conversion errors, DSP Computational errors, D/A Conversion Errors, Compensating filter.

UNIT-II:

Architectures for Programmable DSP Devices

Basic Architectural features, DSP Computational Building Blocks, Bus Architecture and Memory, Data Addressing Capabilities, Address Generation UNIT, Programmability and Program Execution, Speed Issues, Features for External interfacing.

UNIT-III:

Programmable Digital Signal Processors

Commercial Digital signal-processing Devices, Data Addressing modes of TMS320C54XX DSPs, Data Addressing modes of TMS320C54XX Processors, Memory space of TMS320C54XX Processors, Program Control, TMS320C54XX Instructions and Programming, On-ChipPeripherals, Interrupts of TMS320C54XX Processors, Pipeline Operation of TMS320C54XX Processors.

UNIT-IV:

Analog Devices Family of DSP Devices

Analog Devices Family of DSP Devices – ALU and MAC block diagram, Shifter Instruction, Base Architecture of ADSP 2100, ADSP-2181 high performance Processor. Introduction to Black fin Processor - The Black fin Processor, Introduction to Micro Signal Architecture, Overview of Hardware Processing Units and Register files, Address Arithmetic Unit, Control Unit, Bus Architecture and Memory, Basic Peripherals

UNIT-V:

Interfacing Memory and I/O Peripherals to Programmable DSP Devices

Memory space organization, External bus interfacing signals, Memory interface, Parallel I/O interface, Programmed I/O, Interrupts and I/O, Direct memory access (DMA).

TEXT BOOKS:

- 1. Digital Signal Processing Avtar Singh and S. Srinivasan, Thomson Publications, 2004.
- 2. A Practical Approach To Digital Signal Processing K Padmanabhan, R. Vijayarajeswaran, Ananthi. S, New Age International, 2006/2009
- 3. Embedded Signal Processing with the Micro Signal Architecture: Woon-SengGan,Sen M.Kuo, Wiley-IEEE Press,2007

REFERENCE BOOKS:

- 1. Digital Signal Processors, Architecture, Prog and Applications-B.Venkataramani and M. Bhaskar, 2002, TMH.
- 2. DSP Processor Fundamentals, Architectures & Features Lapsley et al. 2000, S. Chand &Co.
- 3. Digital Signal Processing App Using the ADSP-2100 Family by TheApplications Engineering Staff of Analog Devices, DSP Division, Edited by Amy Mar,PHI
- 4. The Scientist and Engineer's Guide to Digital Signal Processing bySteven W. Smith, Ph.D., California Technical Publishing, ISBN 0-9660176-3-3,1997.

Course Outcomes:

Upon the completion of course, student able to

- Understand the basic concepts of Digital SignalProcessing.
- To differentiate the architectural features of General purpose processors and DSP processors.
- Understand the architectures of TMS320C54xx devices and ADSP 2100 DSPdevices.
- Write the simple assembly language programs by using instruction set of TMS320C54xx.
- To interface the various devices to DSPProcessors.

IV Year - I Semester		L	Т	P	С
		3	0	0	3
	MULTI MEDIA COMMUNICATION	-			

(Professional Elective 4)

Course objectives: This course will enable students to

- Define the Multimedia CommunicationModels
- Explain Multimedia Transport in WirelessNetworks
- Solve the Security issues in multimedianetworks
- Illustrate real-time multimedia networkapplications.
- Explain different network layer based application.

Unit-I: Introduction and tools used for MM content development, Media interaction, bimodality of human speech, Lip reading, speech driven talking heads, Lip synchronization, Lip tracking, Audio to visual mapping.

Unit-II: Biomodal person verification, Joint AV coding, Multimedia processing, Digital media, Signal processing elements, Challenges in MM processing, Perceptual coding of Digital Audio.

Unit-III: Transform audio coders, Image coding, video coding, Water marking techniques, Organization, Storage and retrieval, ANNs for MMSP.

Unit-IV: Distributed MM systems, Multimedia processors, Multimedia OS, Multimedia communication standards, MPEG-1, MPEG-2, MPEG-4, MPEG-7.

Unit–V: Real time multimedia across Internet, packet audio/video multimedia transport across IP/ATM Network, Wireless multimedia, mobile multimedia access for internet, multimedia PCS.

Text Book:

- 1. Multimedia Communication Systems: Techniques and Standards, KR RAO et al, Pearson, 2002.
- 2. Insight into Mobile Multimedia Communication : D. BULL et al, Academic Press, 1999
- 3. Multimedia Systems Design : PK ANDLEIGH , K. THAKKAR, PHI, 2002
- 4. Multimedia, TAY VAUGHAN,5/e, TMH,2001

Course Outcomes:

- Develop the multimedia content using multimediatools
- Understand various audio, video and joint codingtechniques.
- Identify the requirements of real time multimedia transfer on IPnetworks.
- Study different types of multimediaprocessors

IV Year - I Semester		L	Т	Р	С
		0	0	3	1.5
	INTERNET OF THINGS LAB				

List of Experiments:

- 1. Introduction to Raspberry Pi Board/ Arduino/NodeMCU.
- 2. Familiarization with ARM keil MDK for programming and debugging an application on the PSoC 4 BLE chip and perform necessary softwareinstallation.
- 3. To interface Push button/Digital sensor (IR/LDR) with ARM keil MDK on PSoC 4 BLE chip and write a program to turn ON LED when push button is pressed or at sensor detection.
- 4. Set up a Bluetooth Low Energy (namely Bluetooth Smart) connection between the PSoC BLE kit and a smart phone and use an app to send and receive data to and from the BLE Pioneerkit.
- 5. To interface capacitor sensor (touch sensor) with smart phone and write a program to turn RGB LED ON/OFF when '1'/'0' is received from smart phone usingBluetooth.
- 6. Automatic street light control to control the street light (Turn on and off based on the light) using Arduino/ Node MCU/RaspberryPi
- 7. Smoke Detection using MQ-2 GasSensor
- 8. Detecting obstacle with IR Sensor and Arduino/ Node MCU/RaspberryPi
- 9. Arduino board interfacing with the temperature and humidity sensor and prints theoutput on LCD / serialmonitor
- 10. Write an Arduino program for interfacing Arduino board with the Ultrasonicsound sensor and print the output on Serialmonitor.

Equipment required for Laboratories:

Arduino/Node MCU/Raspberry Pi + PSoC 4 BLE Bluetooth Low Energy Pioneer Kit + Hardware, MQ-2 Gas Sensor, Ultrasonic sound sensor.

IV Year - I Semester	L	Т	Р	С
Iv I cui I Semester	0	0	3	1.5

MICROWAVE AND OPTICAL COMMUNICATION ENGINEERING LAB

Minimum Twelve Experiments to be conducted:

Part-A (Any 7 Experiments (8 & 9 Compulsory))

- 1. Reflex Klystron Characteristics.
- 2. Gunn DiodeCharacteristics.
- 3. AttenuationMeasurement.
- 4. Directional CouplerCharacteristics.
- 5. Impedance and FrequencyMeasurement.
- 6. Scattering parameters of Circulator.
- 7. Scattering parameters of MagicTee.
- 8. Radiation Pattern of Horn and ParabolicAntennas.
- 9. Synthesis of Microstip antennas (Rectangular Structure) Using any Industrystandard SimulationSoftware.

Part – B (Any 5 Experiments) :

- 10. Characterization of LED.
- 11. Characterization of LaserDiode.
- 12. Intensity modulation of Laser output through an optical fiber.
- 13. Measurement of Data rate for Digital Opticallink.
- 14. Measurement of NA.
- 15. Measurement of losses for Analog Opticallink.

Equipment required for Laboratories:

- 1. Regulated Klystron Power Supply, Klystronmount
- 2. VSWRMeter
- 3. MicroAmmeter
- 4. Multimeter
- 5. CRO
- 6. GUNN Power Supply, PinModulator
- 7. Crystal Diodedetector
- 8. Micro wave components(Attenuation)
- 9. FrequencyMeter
- 10. Slotted linecarriage
- 11. Probe detector
- 12. Wave guideshorts
- 13. SSTuner
- 14. DirectionalCoupler
- 15. E, H, MagicTees
- 16. Circulators, Isolator
- 17. MatchedLoads

- 18. Pyramidal Horn and ParabolicAntennas
- 19. Turntable for AntennaMeasurements
- 20. Fiber Optic Analog Trainer basedLED
- 21. Fiber Optic Analog & Trainer basedlaser
- 22. Fiber OpticTrainer
- 23. Fiber cables (Plastic,Glass)

IV Year - II Semester		L	Т	Р	С
IV I cai - II Scillester		3	0	0	3
	WIRELESS COMMUNICATION				
	(Professional Elective 5)				

Course Objectives:

The student will be introduced to:

- The Aim of this course is to introduce the fundamental technologies forwireless Communication and networking
- Introducing the concepts of Multiple AccessSchemes
- Introducing the comprehensive exposure to the fast-evolving high-tech fields of Wirelesscommunications
- It introduces the latest technologies such as CDMA, OFDM, and MIMO, whichform The bedrock of 3G/4G wirelessnetworks

UNIT I

Introduction to 3G/4G Wireless Communications: Introduction, 2G Wireless Standards, Wireless 3GWireless Standards, 4GStandards, Overview of Cellular Service ProgressionPrinciples of Wireless Communications: The Wireless Communication Environment, Modeling of Wireless Systems, System Model for Narrowband Signals, Rayleigh FadingWireless Channel, BER Performance of Wireless Systems: SNR in a Wireless System, BER inWireless Communication System, Rayleigh BER at High SNR. Intuition for BER in a FadingChannel. Channel Estimation in Wireless Systems, Diversity in Wireless Communication.

UNIT II

Code Division for Multiple Access (CDMA): Introduction to CDMA, Basic CDMAMechanism, Fundamentals of CDMA Codes, Spreading Codes based on Pseudo-Noise (PN)Sequences, Correlation Properties of Random CDMA Spreading Sequences, Multi-UserCDMA, Advantages of CDMA.

UNIT III

Multiple-Input Multiple-Output Wireless Communications: Introduction to MIMOWireless Communications, MIMO System Model, MIMO Zero-forcing (ZF) Receiver, MIMOMMSE Receiver, Singular Value Decomposition (SVD) of the MIMO Channel, Singular Value Decomposition (SVD) and MIMO Capacity

UNIT IV

Orthogonal Frequency-Division Multiplexing: Introduction, Motivation and MulticarrierBasics, OFDM Example, Bit-Error Rate (BER) for OFDM, MIMO-OFDM, Effect ofFrequency Offset in OFDM, OFDM – Peak-to-Average Power Ratio (PAPR), SC-FDMA.

UNIT V

Satellite-Based Wireless Systems: Introduction, Satellite Orbits, Use of Satellites forCommunication, Satellites and Transponders, Signal and Noise Calculations, Systems

UsingGeostationary Satellites, Systems Using Low-Earth-Orbit Satellites, Systems Using MediumEarth-Orbit Satellites.

TEXTBOOKS:

- 1. Principles of Modern Wireless Communication Systems Aditya K Jagannathan,Mc Graw Hill publishers,2017
- 2. Wireless Communication Technology Blake, Delmar/Cengage Learning India, first Edition, 2012

REFERENCES:

1. Wireless Communications and Networking - Vijay K. Garg, Morgan Kaufmann, 2007

Course Outcomes:

After going through this course, the student will be able to

- Know about the Wireless systems and Standards (1G/2G/3Gsystems).
- Concept and analysis of CDMA-based wirelessnetworks.
- Understand the concepts of Multiple-Input Multiple-Output(MIMO).
- Understand the modern wireless systems usingOFDM.
- Analysis of Satellite-Based Wirelesssystems.

IV Year - II Semester		L	Т	Р	С
		3	0	0	3
	VLSI TESTING & TESTABILITY				
	(Professional Elective 5)				

Course Objectives:

- To impart knowledge on the basic faults that occur in digital systems
- To describe fault detection techniques in combinational circuits.
- To outline procedures to generate test patterns for detecting single stuck faults in combinational and sequential circuits.
- To explain design for testability techniques with improved faultcoverage.
- To introduce BIST concepts and specificarchitectures.
- To give exposure to approaches for introducing BIST into logic circuits, memories and embeddedcores.

UNIT I

Introduction to Test and Design for Testability (DFT) Fundamentals Modelling: Modelling digital circuits at logic level, register level and structural models, Levels of modelling. Logic Simulation: Types of simulation, Delay models, Element evaluation, Hazard detection, Gate level event driven simulation.

UNIT II

Fault Modelling – Logic fault models, Fault detection and redundancy, Fault equivalence and fault location. Single stuck and multiple stuck – Fault models. Fault simulation applications, General techniques for Combinationalcircuits.

UNIT III

Testing for single stuck faults (SSF), Automated test pattern generation (ATPG/ATG) for SSFs in combinational and sequential circuits, Functional testing with specific fault models, Vector simulation – ATPG vectors, formats, Compaction and compression, Selecting ATPGTool.

UNIT IV

Design for testability – testability trade-offs, techniques. Scan architectures and testing – controllability and Observability generic boundary scan, full integrated scan, storage cells for scan design. Board level and system level DFT approaches. Boundary scan standards. Compression techniques – different techniques, syndrome test and signature analysis

UNIT V

Built-in self-test (BIST): BIST Concepts and test pattern generation. Specific BIST Architectures – CSBL, BEST, RTS, LOCST, STUMPS, CBIST, CEBS, RTD, SST, CATS, CSTP, BILBO, Brief ideas on some advanced BIST concepts and design for self-test at board level. Memory BIST (MBIST): Memory test architectures and techniques – Introduction to memory test, Types of memories and integration, Embedded memory testing model. Memory test requirements for MBIST, Brief ideas on embedded coretesting

TEXT BOOKS:

- 1. Miron Abramovici, Melvin A. Breur, Arthur D. Friedman, Digital Systems Testing and Testable Design, Jaico Publishing House, 2001.
- 2. Alfred Crouch., Design for Test for Digital ICs & Embedded Core Systems, Prentice Hall.

REFERENCES:

- 1. Robert J. Feugate, Jr., Steven M. Mentyn, Introduction to VLSI Testing, Prentice Hall, Englehood Cliffs, 1998.
- 2. Bushnell, M., and Agrawal, Vishwani D, Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits, Kluwer AcademicPublishers,2002

Course Outcomes:

- Model digital circuits at logic and RTLlevels
- Simulate digital ICs in the presence of faults and evaluate the given test set for fault coverage
- Generate test patterns for detecting single stuck faults in combinational and sequential circuits
- Identify schemes for introducing testability into digital circuits with improved fault coverage
- Compare different approaches for introducing BIST into logic circuits, memories and embedded cores

IV Year - II Semester		L	Т	P	С	
		3	0	0	3	
MACHINE LEARNING & ARTIFIICIAL INTELLIGENCE						

(Professional Elective 5)

OBJECTIVE:

To familiarize students with basic concepts, theories and advancements in ML and AI and help them in understanding the mathematics behind algorithms and apply them in real world scenarios

UNIT – I

Introduction to ML/AI - AI Foundation, history of AI, latest advancements and applicationsMachine Learning – I: Linear Regression - Learn to implement linear regression and predict continuous data values, Clustering - Learn how to create segments based on similarities using K-Means and Hierarchical clustering

UNIT – II

Machine Learning – II:Naïve Bayes and Logistic regression - Understand how supervised learning is used for classification, Support vector machines - Learn to classify data points using support vectors, decision trees - Tree-based model that is simple and easy to use. Learn the fundamentals on how to implement them

Natural Language Processing: Basics of text processing, lexical processing - Learn to extract features from unstructured text and build machine learning models on text data, syntax and semantics - Conduct sentiment analysis, learn to parse English sentences and extract meaning from them

UNIT – III

Deep learning & Neural Networks: Information flow in neural networks - Understand the components and structure of artificial neural networks, Training a neural network - Learn the latest techniques used to train highly complex neural networks, Convolutional neural networks - Use CNN's to solve complex image classification problems, Recurrent neural networks - Study LSTMs and RNN's applications in text analytics, Creating and deploying networks using TensorFlow and Keras (Deep Learning Library) - Build and deploy your own deep neural networks on a website, learn to use Tensor Flow API and Keras.

UNIT – IV

Graphical Models: Introduction to Bayesian methods, Graphical models - Study probabilistic way of modelling systems - Markov properties, Factor Graphs and Bayesian belief networks, Learning and Inference - Learn how graphics models are used for supervised and unsupervised learning

UNIT – V

Reinforcement Learning: Introduction to RL, understand how machines can be programmed to learn by themselves, Exact methods - Learn the math behind Exact Statistics - Dynamic Programming, Monte Carlo methods, Temporal Difference Learning, Approximate Methods -Learn policy gradient methods and their applications in learning

TEXTBOOKS:

- 1. Machine Learning, by Tom M Mitchell, Indian Edition, McGraw Hill, first Edition2017.
- 2. Deep Learning by Goodfellow, Bengio, Courville. The MIT Press, 2016
- Elaine Rich and Kevin Knight, "Artificial Intelligence", Tata McGraw Hill,3rd Edition 2008.

REFERENCE BOOKS

- **1.** UnderstandingMachine Learning: From Theory to Algorithms, by Shai Shalev-Shwartzand Shai Ben-David, 1st Edition, Cambridge UniversityPress,2014.
- **2.** Artificial Intelligence A Modern Approach by Stuart Russell & Peter Norvig, Prentice Hall,3rdEdition,2009.

Course Outcomes:

The student should be able to:

- Understand machine learning concepts and range of problems that can be handled by machinelearning.
- Apply the machine learning concepts in real lifeproblems.
- Understand artificial neural networks concept and apply techniques to train the neural networks
- Understand how graphical models are used for supervised and unsupervisedlearning
- Understand Reinforcement Learning concept and applications
- Modify the algorithms based onneed

IV Year - II Semester		L	Т	Р	С
		3	0	0	3
	SPEECH PROCESSING				
	(Professional Elective 5)				

Course Objectives:

The main objectives of the course are as follows:

- Understand the mechanism of human speech production and articulation
- Understand time and frequency domain methods of speechprocessing
- Understand linear predictive analysis for speech signals and LPC
- Study the algorithms and models involved for speaker and speech recognitionsystems

Unit I

Mechanics of speech

Speech production: Mechanism of speech production, Acoustic phonetics, The Acoustic Theory of Speech Production: Uniform lossless tube, Effects of losses in the vocal tract, Digital models for speech signals: Vocal tract, Radiation, Excitation, Auditory perception: psycho acoustics. Representations of speech waveform: Sampling of speech signals, Quantization.

Unit II

Time and frequency domain methods for speech processing

Time domain parameters of Speech signal: Short-Time Energy, Average Magnitude, Average Zero crossing Rate, Silence Discrimination using ZCR and energy, Short Time Auto Correlation Function, Pitch period estimation using Auto Correlation Function.

Short Time Fourier analysis: Fourier transform and linear filtering interpretations, Sampling rates in time and frequency, Pitch detection, Analysis by Synthesis, Analysis synthesis systems: Phase vocoder, Channel Vocoder, Median Smoothing, Spectrographic displays

Unit III

Linear predictive analysis of speech

Basic Principles of linear predictive analysis: Auto correlation method, Covariance method, Solutionof LPC equations: Cholesky method, Durbin's Recursive algorithm, Application of LPC parameters: Pitch detection using LPC parameters, Formant analysis using LPC parameters, VELP. Relations Between the Various Speech Parameters, CELP.

Unit IV

Application of speech processing

Voice response systems: General considerations in the design of voice response systems, A multiple output digital voice response system, Speaker recognition systems: Speaker verification system.

UNIT V

Speech recognition systems: Isolated digit recognition system, Continuous digit recognition system. Typical applications of computer voice response systems: Wiring communication equipment, Information retrieval systems

Text books:

- 1. L. R. Rabiner and R. W. Schaffer, Digital Processing of Speech signals, Prentice Hall, 2004
- 2. Ben Gold and Nelson Morgan, Speech and Audio Signal Processing, John Wiley and Sons Inc., Singapore,2004

References:

- 1. Quatieri, Discrete-time Speech Signal Processing, Prentice Hall,2001
- 2. L.R. Rabiner and B. H. Juang, Fundamentals of speech recognition, Prentice Hall, 1999.

Course Outcomes:

At the end of this course the student will be able to:

- Summarize the mechanism of human speech production and articulation
- Identify the time domain speech signal parameters
- Differentiate time and frequency domain methods of speechprocessing
- Attribute linear predictive analysis for speechsignals
- Explain the solutions for LPCequations
- Implement the different algorithms and models involved for speaker and speech recognition systems

IV Year - II Semester	I		Т	Р	С
	3	,	0	0	3
	INDUSTRIAL INTERNET OF THINGS				
	(PROFESSIONAL ELECTIVE-5)				

Course Objectives:

The main objectives of this course are:

- Learn and understand the Importance of IoT in industrial applications
- Know how IoT has become a game changer in the new economy where the customersare looking for integratedvalue.
- Apply the IoT concepts in building solutions to Industrialproblems
- Learn and understand the tools and techniques that enable IoT solution andSecurity aspects.

UNIT-I

INTRODUCTION: Introduction to IoT, IoT Vs. IIoT, History of IIoT, Components of IIoT - Sensors, Interface, Networks, People &Process, Hype cycle, IOT Market, Trends& future Real life examples, Key terms of IoT– IoT Platform, Interfaces, API, clouds, Data Management Analytics, Mining &Manipulation; Role of IIoT in Manufacturing Processes Use of IIoT in plant maintenance practices, Sustainability through Business excellence tools Challenges and Benefits in implementing IIoT.

UNIT-II

ARCHITECTURES:Overview of IoTcomponents, Various Architectures of IoT and IIoT, Advantages & disadvantages, Industrial Internet - Reference Architecture; IIoT System components: Sensors, Gateways, Routers, Modem, Cloud brokers, servers and its integration, WSN, WSN network design for IoT.

SENSORS AND INTERFACING:Introduction to sensors, Transducers, Classification, Roles of sensors in IIoT, Various types of sensors, Design of sensors, sensor architecture, special requirements for IIoT sensors, Role of actuators, types of actuators. Hardwire the sensors with different protocols such as HART, MODBUS-Serial & Parallel, Ethernet, BACnet, Current, M2M etc.

UNIT-III

PROTOCOLS AND CLOUD:Need of protocols; Types of Protocols, Wi-Fi, Wi-Fi direct, Zigbee, Z wave, BACnet, BLE, Modbus, SPI, I2C, IIoT protocols –COAP, MQTT, 6LoWPAN, LWM2M, AMPQ IIoT cloud platforms: Overview of COTS cloud platforms, Predix, PTC Thing Worx, Microsoft Azure etc. Data analytics, cloud services, Business models: SaaS, PaaS, IaaS.

UNIT-IV

SECURITY:Introduction to web security, Conventional web technology and relationship with IIoT, Vulnerabilities of IoT, Privacy, Security requirements, Threat analysis, Trust, IoT security tomography and layered attacker model, Identity establishment, Access control, Message

integrity, Non-repudiation and availability, Security model for IoT, Network security techniques Management aspects of cyber security.

ANALYTICS: IoT Analytics: Role of Analytics in IoT, Data visualization Techniques.

UNIT-V

DIGITAL TWIN: Introduction to Digital Twin, need for Digital Twin, Elements of Digital Twin, Digital Twin process design and information requirements, Digital twin conceptual architecture - create, communicate, Aggregate, Analyze, Insight, Act, driving business value through digital twin.

DIGITAL TWIN FOR ASSET: Digitalizing asset behaviour using simulated mathematical modelling and building Digital Twin - Need, Benefits, Architecture, Models and Use cases - Predictive and Prescriptive maintenance.

TEXT BOOKS:

- 1. Building the Internet of Things with IPv6 and MIPv6: The EvolvingWorld of M2M Communications, by Daniel Minoli, Bernd Scholz-Reiter, Florian, WillyPublication
- 2. Digital Twin Technologies and Smart Cities by Farsi, M., Daneshkhah, A., Hosseinian-Far, A., Jahankhani, H., Springer International Publishing, 2020.
- 3. Architecting the Internet of Things ,by Michahelles, Springer, 2011

REFERENCES:

- 1. The Internet of Things Connecting Objects to the Web" by HakimaChaouchi,, WillyPublications
- 2. The Internet of Things: Key Applications and Protocols, Olivier Hersent, David Boswarthick, Omar Elloumi,, 2nd Edition, WillyPublications
- 3. Inside the Internet of Things (IoT), Deloitte UniversityPress
- 4. Internet of Things- From Research and Innovation toMarket Deployment; By Ovidiu& Peter; River PublishersSeries
- 5. Five thoughts from the Father of the Internet of Things; by Phil Wainewright Kevin Ashton
- 6. How Protocol Conversion Addresses IIoT Challenges: White Paper By RedLion.
- 7. https://www.ge.com/digital/applications/digital-twin
- 8. https://www2.deloitte.com/us/en/insights/focus/industry-4-0/digital-twin-technology-smart-factory.html

Course Outcomes:

At the end of this course the student will be able to:

- Understand the elements of IoT to build a total control plane in an Industrial application
- Apply M2M protocols for development of IoT Applications.
- Learn and understand the concept of digitalization and dataacquisition.
- Build smart factory based on the IoTconcepts
- Build Industrial DigitalTwins.

IV Year - II Semester		L	Т	P	С
		3	0	0	3
	3D PRINITING				
	Open Elective (OE2)				
	-				

Course Objectives:

The main objectives of this course are:

- The course aims at the importance of Additive Manufacturing, classifications, models, specifications of various Additive ManufacturingTechniques.
- Principles and operation of 3Dp, Various types of 3DP
- Techniques of printingelectronics
- To learn the data formats and soft-waresrequired
- The applications of RP

UNIT-I

Introduction to Prototyping, Traditional Prototyping Vs Rapid Prototyping (RP), Need for time compression in product development, Distinction between RP and CNC and other related technologies, Classification of RP, commonly used terms, advantages and limitations of rapid prototyping.

UNIT-II

Three-Dimensional Printing (3DP)

Overview of 3DP, 3D Printer, 3D Systems, and Z Corporation, ExOne - Metal and Molding Sand Printer, Metal Line: Direct Metal Printer, Molding Sand Line: Direct Core and Mold-Making Machine, Soligen - Direct Shell Production Casting (DSPC), Voxel jet- 3D Printing System, Optomec - Maskless Mesoscale Material Deposition (M3D),

UNIT-III

Techniques for printing electronics, printing electronics, 2D-printing technologies-Flexographic, Offset, Gravure, screen printing, Processes in 3D-printing electronics - Improved building process for 3D devices, Fictionalization of 3D surfaces, Current trends in 3D-printed electronics- antennas, flexible electronics, batteries, The market for 3D-printed electronics And integrated machines

$\mathbf{UNIT} - \mathbf{IV}$

RAPID PROTOTYPING DATA FORMATS: STL Format, STL File Problems, consequence of building valid and invalid tessellated models, STL file Repairs: Generic Solution, other Translators, Newly Proposed Formats.

RAPID PROTOTYPING SOFTWARE'S: Features of various RP software's like Magics, Mimics, Solid View, View Expert, 3 D View, Velocity 2, STL View 3 Data Expert and 3 D doctor.

UNIT –V

RP APPLICATIONS: Application in engineering, analysis and planning, aerospace industry, automotive industry, jewelry industry, coin industry, GIS application, arts and architecture. RP medical and bioengineering applications: planning and simulation of complex surgery, customized implants & prosthesis, design and production of medical devices, forensic science and anthropology, visualization of bimolecular.

TEXT BOOKS:

- 1. Chua Chee Kai., Leong Kah Fai., Chu Sing Lim, Rapid Prototyping: Principles and Applications in Manufacturing, World Scientific, 2010.
- 2. Andreas Gebhardt Jan-Steffen Hotter, Additive Manufacturing: 3D Printing for prototyping and Manufacturing, Hanser Publications, 6915 Valley Avenue, Cincinnati, Ohio.
- 3. Ian Gibson., David W Rosen., Brent Stucker, Additive Manufacturing Technologies: Rapid Prototyping to Direct Digital Manufacturing, Springer, 2010.

REFERENCE BOOKS:

- 1. Rapid Manufacturing / D.T. Pham and S.S.Dimov/Springer
- 2. Wohlers Report 2000 /Terry T Wohlers/WohlersAssociates
- 3. Rapid Prototyping & Manufacturing / Paul F.Jacobs/ASMEPress
- 4. Rapid Prototyping / Chua&Liou

Course Outcomes:

At the end of this course the student will be able to:

- Identify the importance of RP in presentscenario.
- Gain the knowledge on 3DP
- Application of 3DP in electronics.
- Minimize various errors that are occurring during conversion of CADmodels.
- Applications of RP.

IV Year - II Semester		L	Т	Р	С
		3	0	0	3
	BLOCKCHAIN TECHNLOGY				
	Open Elective (OE2)				

Course Objectives:

The main objectives of this course are:

- Understand how block chain systems (mainly Bit coin and Ethereum) work and to securely interact with them,
- Design, build, and deploy smart contracts and distributed applications,
- Integrate ideas from block chain technology into their ownprojects.

Unit I:

Introduction: Scenarios, Challenges Articulated, Blockchain, Blockchain Characteristics, Opportunities Using Blockchain, History of Blockchain.

Evolution of Blockchain: Evolution of Computer Applications, Centralized Applications, Decentralized Applications, Stages in Blockchain Evolution, Consortia, Forks, Public Blockchain Environments, Type of Players in Blockchain Ecosystem, Players inMarket.

Unit II:

Blockchain Concepts: Introduction, Changing of Blocks, Hashing, Merkle-Tree, Consensus, Mining and Finalizing Blocks, Currency aka tokens, security on blockchain, data storage on blockchain, wallets, coding on blockchain: smart contracts, peer-to-peer network, types of blockchain nodes, risk associated with blockchain solutions, life cycle of blockchain transaction.

Unit III:

Architecting Blockchain solutions:Introduction, Obstacles for Use of Blockchain, Blockchain Relevance Evaluation Framework, Blockchain Solutions Reference Architecture, Types of Blockchain Applications, Cryptographic Tokens, Typical Solution Architecture for Enterprise Use Cases, Types of Blockchain Solutions, Architecture Considerations, Architecture with Blockchain Platforms, Approach for Designing Blockchain Applications.

Unit IV:

Ethereum Blockchain Implementation: Introduction, Tuna Fish Tracking Use Case, Ethereum Ecosystem, Ethereum Development, Ethereum Tool Stack, Ethereum Virtual Machine, Smart Contract Programming, Integrated Development Environment, Truffle Framework, Ganache, Unit Testing, Ethereum Accounts, MyEtherWallet, Ethereum Networks/Environments, Infura, Etherscan, Ethereum Clients, Decentralized Application, Metamask, Tuna Fish Use Case Implementation, OpenZeppelinContracts

Unit V:

Hyperledger Blockchain Implementation: Introduction, Use Case – Car Ownership Tracking, Hyperledger Fabric, Hyperledger Fabric Transaction Flow, FabCar Use Case Implementation, Invoking Chaincode Functions Using Client Application.

Advanced Concepts in Blockchain: Introduction, InterPlanetary File System (IPFS),

Zero-Knowledge Proofs, Oracles, Self-Sovereign Identity, Blockchain with IoT and AI/ML Quantum Computing and Blockchain, Initial Coin Offering, Blockchain Cloud Offerings, Blockchain and its Future Potential.

TEXT BOOKS:

1) "Blockchain for Enterprise Application Developers", Ambadas, Arshad SarfarzAriff, Sham - Wiley

2) "Mastering Bitcoin: Programming the Open Blockchain", Andreas M. Antonpoulos, O'Reilly

REFERENCES:

1) Blockchain: A Practical Guide to Developing Business, Law, and Technology Solutions, Joseph Bambara, Paul R. Allen, Mc GrawHill.

2) Blockchain: Blueprint for a New Economy, Melanie Swan, O'Reilly

E-RESOURCES:

https://github.com/blockchainedindia/resources

Course Outcomes:

At the end of this course the student will be able to:

- Demonstrate the foundation of the Block chain technology and understand the processes in payment andfunding.
- Identify the risks involved in building Block chainapplications.
- Review of legal implications using smartcontracts.
- Choose the present landscape of Blockchain implementations and Understand Crypto currencymarkets
- Examine how to profit from trading cryptocurrencies.

IV Year - II Semester		L	Т	Р	С	
		3	0	0	3	
CYBER SECURITY & CRYPTOGRAPHY						
Open Elective (OE2)						

Course Objectives:

- Able to identify security risks and take preventive steps
- To understand the forensicsfundamentals.
- To understand the evidence capturingprocess.
- To understand the preservation of digitalevidence.

Unit I : Introduction to Cybercrime: Introduction, Cybercrime: Definition and Origins of the Word, Cybercrime and Information Security, Cybercriminals, Classifications of Cybercrime, Cyberstalking, Cybercafe and Cybercrimes, Botnets. Attack Vector, · Proliferation of Mobile and Wireless Devices, Security Challenges Posed by Mobile Devices, Attacks on Mobile/Cell Phones, Network and Computer Attacks,

Unit II: Tools and Methods :Proxy Servers and Anonymizers, Phishing, Password Cracking, · Keyloggers and Spywares, Virus and Worms, · Trojan Horses and Backdoors, · Steganography, Sniffers, Spoofing, Session Hijacking Buffer over flow, DoS and DDoS Attacks, SQL Injection, Buffer Overflow, · Attacks on Wireless Networks, Identity Theft (ID Theft), Foot Printing and Social Engineering, Port Scanning, Enumeration

Unit III : Cyber Crime Investigation: Introduction, Investigation Tools, eDiscovery, Digital Evidence Collection, Evidence Preservation, E-Mail Investigation, E-Mail Tracking, IP Tracking, E-Mail Recovery, Hands on Case Studies. Encryption and Decryption Methods, Search and Seizure ofComputers, Recovering Deleted Evidences, Password Cracking.

Unit IV: Computer Forensics and Investigations: Understanding Computer Forensics, Preparing for Computer Investigations. Current Computer Forensics Tools: Evaluating Computer Forensics Tools, Computer Forensics Software Tools, Computer Forensics Hardware Tools, Validating and Testing Forensics Software, Face, Iris and Fingerprint Recognition, Audio Video Analysis, Windows System Forensics, Linux System Forensics, Graphics and Network Forensics, E-mail Investigations, Cell Phone and Mobile Device Forensics

Unit V: Cyber Crime Legal Perspectives: Introduction, · Cybercrime and the Legal Landscape around the World, The Indian IT Act, Challenges to Indian Law and Cybercrime Scenario in India, · Consequences of Not Addressing the Weakness in Information Technology Act, · Digital Signatures and the Indian IT Act, · Amendments to the Indian IT Act, · Cybercrime and Punishment, · Cyberlaw, Technology and Students: Indian Scenario.

TEXT BOOKS:

- 1. Sunit Belapure Nina Godbole "Cyber Security: Understanding Cyber Crimes, Computer Forensics and Legal Perspectives", WILEY, 2011.
- 2. NelsonPhillipsandEnfingerSteuart, "ComputerForensicsandInvestigations", Cengage Learning, New Delhi, 2009.

REFERENCE BOOKS:

- 1. Michael T. Simpson, Kent Backman and James E. Corley, "Hands on EthicalHacking and Network Defence", Cengage,2019.
- 2. Computer Forensics, Computer Crime Investigation by John R. Vacca, Firewall Media, New Delhi.
- 3. Alfred Basta, Nadine Basta, Mary Brown and Ravinder Kumar "Cyber Security and Cyber Laws", Cengage, 2018.

Web References:

- 1. CERT-In Guidelines- http://www.cert-in.org.in/
- 2. <u>https://www.coursera.org/learn/introduction-cybersecurity-cyber-attacks[</u> OnlineCourse]
- 3. <u>https://computersecurity.stanford.edu/free-online-videos[</u> Free OnlineVideos]
- Nickolai Zeldovich. 6.858 Computer Systems Security. Fall 2014. Massachusetts Institute of Technology: MIT OpenCourseWare, <u>https://ocw.mit.edu</u>. License:<u>Creative Commons BY-</u><u>NC-SA</u>.

Course Outcomes:

At the end of the course, student will be able to

- Explain the computer forensicsfundamentals.
- Describe the types of computer forensicstechnology
- Analyze various computer forensicssystems.
- Illustrate the methods for data recovery, evidence collection and dataseizure.

OPEN ELECTIVES OFFERED BY ECE

	L	Т	P	С
	3	0	0	3
PRINCIPLES OF COMMUNICATION Open Elective (OE1)	1			

Course objectives:

This course will enable students to:

- Understand simple systems for generating and demodulating AM, DSB, SSB andVSB signals
- Understand the concepts in Angle modulation for the design of communicationsystems
- Study simple systems for generating and demodulating frequency modulated signals
- Learn the concepts of random process and various types ofnoise.
- Study the performance of the communication system in presence of noise.
- Learn pulse modulation and samplingtechniques

UNIT-1

Amplitude modulation: Introduction, Amplitude Modulation: Time & Frequency – Domain description, switching modulator, Envelop detector.

Double side band-suppressed carrier modulation: Time and Frequency – Domain description, Ring modulator, Coherent detection, Costas Receiver, Quadrature Carrier Multiplexing.

Single side-band and vestigial sideband methods of modulation: SSB Modulation, VSB Modulation, FrequencyTranslation, Frequency- Division Multiplexing,Theme Example: VSB Transmission of Analog and Digital Television

UNIT-II

Angle modulation: Basic definitions, Frequency Modulation: Narrow Band FM, Wide Band FM, Transmission bandwidth of FM Signals, Generation of FM Signals, Demodulation of FM Signals, FM StereoMultiplexing,

Phase–Locked Loop: Nonlinear model of PLL, Linear model of PLL, Nonlinear Effects in FM Systems. The Super heterodyne Receiver

UNIT-III

Random variables & process: Introduction, Probability, Conditional Probability, Random variables, Several Random Variables. Statistical Averages: Function of a random variable, Moments, Random Processes, Mean, Correlation and Covariance function: Properties of autocorrelation function, Cross–correlation functions.

Noise: Shot Noise, Thermal noise, White Noise, Noise EquivalentBandwidth, Noise Figure.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UNIT-IV

Noise in analog modulation: Introduction, Receiver Model, Noise in DSB-SC receivers, Noise in AM receivers, Threshold effect, Noise in FM receivers, Capture effect, FM threshold effect, FM threshold reduction, Pre-emphasis and De-emphasise inFM.

UNIT-V

Digital representation of analog signals:Introduction,Why Digitize Analog Sources?, The Sampling process, Pulse Amplitude Modulation, Time Division Multiplexing, Pulse-Position Modulation, Generation of PPM Waves, Detection of PPM Waves, The Quantization Process, Quantization Noise,

Pulse Code Modulation: Sampling, Quantization, Encoding, Regeneration, Decoding, Filtering, Multiplexing

Text books:

- 1. Principles of Communication Systems H Taub & D. Schilling, GautamSahe, TMH, 2007, 3rdEdition.
- 2. Communication Systems B.P. Lathi, BS Publication, 2006.

References:

- 1. Principles of Communication Systems Simon Haykin, John Wiley, 2nd Edition.
- 2. Electronics & Communication System George Kennedy and Bernard Davis, TMH 2004.
- 3. Communication Systems– R.P. Singh, SP Sapre, Second Edition TMH,2007.

Course Outcomes:

At the end of the course, students will be able to:

- Analyze the performance of analog modulation schemes in time and frequencydomains.
- Analyze the performance of angle modulated signals.
- Characterize analog signals in time domain as random processes andnoise
- Characterize the influence of channel on analog modulated signals
- Determine the performance of analog communication systems in terms of SNR
- Analyze pulse amplitude modulation, pulse position modulation, pulse code modulation and TDM systems.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

	L	Т	Р	С
	3	0	0	3
EMBEDDED SYSTEMS			<u> </u>	
Open Elective (OE2)				

Course Objectives:

The main objectives of this course are given below:

- The basic concepts of an embedded system areintroduced.
- The various elements of embedded hardware and their design principles are explained.
- Different steps involved in the design and development of firmware for embedded systems iselaborated.
- Internals of Real-Time operating system and the fundamentals of RTOS based embedded firmware design is discussed.
- Fundamental issues in hardware software co-design were presented and explained.
- Familiarize with the different IDEs for firmware development for different family of processors/controllers and embedded operatingsystems.
- Embedded system implementation and testing tools are introduced and discussed.

UNIT-I

INTRODUCTION: Embedded system-Definition, history of embedded systems, classification of embedded systems, major application areas of embedded systems, purpose of embedded systems, the typical embedded system-core of the embedded system, Memory, Sensors and Actuators, Communication Interface, Embedded firmware, Characteristics of an embedded system, Quality attributes of embedded systems, Application-specific and Domain-Specific examples of an embedded system.

UNIT-II

EMBEDDED HARDWARE DESIGN: Analog and digital electronic components, I/O types and examples, Serial communication devices, Parallel device ports, Wireless devices, Timer and counting devices, Watchdog timer, Real time clock.

UNIT-III

EMBEDDED FIRMWARE DESIGN: Embedded Firmware design approaches, Embedded Firmware development languages, ISR concept, Interrupt sources, Interrupt servicing mechanism, Multiple interrupts, DMA, Device driver programming, Concepts of C versus Embedded C and Compiler versusCross-compiler.

UNIT-IV

REAL TIME OPERATING SYSTEM: Operating system basics, Types of operating systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task Scheduling, Threads, Processes and Scheduling, Task communication, Task synchronisation.

HARDWARE SOFTWARE CO-DESIGN: Fundamental Issues in Hardware Software Co-Design, Computational models in embedded design, Hardware software Trade-offs, Integration of Hardware and Firmware.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA – 533 003, Andhra Pradesh, India DEPARTMENT OF ELECTRONICS AND COMMUNICATION ENGINEERING

UNIT-V:

EMBEDDED SYSTEM DEVELOPMENT, IMPLEMENTATION AND TESTING: The

integrated development environment, Types of files generated on cross-compilation, Deassembler/Decompiler, Simulators, Emulators and Debugging, Target hardware debugging, Embedded Software development process and tools, Interpreters, Compilers and Linkers, Debugging tools, Quality assurance and testing of the design, Testing on host machine, Simulators, Laboratory Tools.

Text Books:

- 1. Embedded Systems Architecture- By Tammy Noergaard, Elsevier Publications, 2013.
- 2. Embedded Systems-By Shibu. K.V-Tata McGraw Hill Education Private Limited, 2013.

References:

- 1. Embedded System Design, Frank Vahid, Tony Givargis, John Wiley Publications, 2013.
- 2. Embedded Systems-Lyla B.Das-Pearson Publications, 2013.

Course Outcomes:

At the end of this course the student can able to:

- Understand the basic concepts of an embedded system and able to know an embedded system design approach to perform a specificfunction.
- The hardware components required for an embedded system and the design approach of an embeddedhardware.
- The various embedded firmware design approaches on embeddedenvironment.
- Understand how to integrate hardware and firmware of an embedded system using real time operating system.

COURSE STRUCTURE AND SYLLABUS

For

ELECTRONICS AND COMMUNICATION ENGINEERING (Applicable for batches admitted from 2016-2017)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA KAKINADA - 533 003, Andhra Pradesh, India

I Year - I Semester

S.No.	Subjects	L	Т	Р	Credits
1-HS	English – I	4			3
2-BS	Mathematics - I	4			3
3-ES	Mathematics -II (Numerical Methods and Complex Variables)	4			3
4-BS	Applied Physics	4			3
5-ES	Computer Programming	4			3
6-ES	Engineering Drawing	1		3	3
7-HS	English - Communication Skills Lab -1			3	2
8-BS	Applied / Engineering Physics Laboratory			3	2
9-BS	Applied / Engineering Physics – Virtual Labs - Assignments			2	
10-ES	Engineering Workshop& IT Workshop			3	2
	Total Credits				24

I Year - II Semester

S.No.	Subjects	L	Т	Р	Credits
1-HS	English – II	4			3
2-BS	Mathematics -III	4			3
3-BS	Applied Chemistry	4			3
4-ES	Electrical and Mechanical Technology	4			3
5-HS	Environmental Studies	4			3
6-ES	Data Structures	4			3
7-BS	Applied / Engineering Chemistry Laboratory			3	2
8-HS	English - Communication Skills Lab -2			3	2
9-ES	Computer Programming Lab			3	2
	Total Credits				24

II Year - I Semester

S.No.	Subjects	L	Т	Р	Credits
1	Electronic Devices and Circuits	4			3
2	Switching Theory and Logic Design	4			3
3	Signals and Systems	4			3
4	Network Analysis	4			3
5	Random Variables and Stochastic Process	4			3
6	Managerial Economics & Financial Analysis	4			3
7	Electronic Devices and Circuits Lab			3	2
8	Networks & Electrical Technology Lab			3	2
	Total Credits				22

II Year - II Semester

S.No.	Subjects	L	Т	Р	Credits
1	Electronic Circuit Analysis	4			3
2	Control Systems	4			3
3	Electromagnetic Waves and Transmission Lines	4			3
4	Analog Communications	4			3
5	Pulse and Digital Circuits	4			3
6	Management Science	4			3
7	Electronic Circuit Analysis Lab			3	2
8	Analog Communications Lab			3	2
	Total Credits				22

III Year - I Semester

S.No.	Subjects	L	Т	Р	Credits
1	Computer Architecture and Organization	4			3
2	Linear I C Applications	4			3
3	Digital I C Applications	4			3
4	Digital Communications	4			3
5	Antenna and Wave Propagation	4			3
6	Pulse and Digital Circuits Lab			3	2
7	Linear I C Applications Lab			3	2
8	Digital I C Applications Lab			3	2
MC	Professional Ethics & Human Values		3		
	Total Credits				21

III Year - II Semester

S.No.	Subjects	L	Т	Р	Credits
1	Micro Processors & Micro Controllers	4			3
2	Micro Wave Engineering	4			3
3	VLSI Design	4			3
4	Digital Signal Processing	4			3
5	 OPEN ELECTIVE 1. OOPs through Java 2. Data Mining 3. Industrial Robotics 4. Power Electronics 5. Bio-Medical Engineering 6.Artificial Neural Networks 	4			3
6	Micro Processors & Micro Controllers Lab			3	2
7	VLSI Lab			3	2
8	Digital Communications Lab			3	2
MC	IPR & Patents		2		
	Total Credits				21

IV Year - I Semester

S.No.	Subjects	L	Т	Р	Credits
1	Radar Systems	4			3
2	Digital Image Processing	4			3
3	Computer Networks	4			3
4	Optical Communications	4			3
5	 Elective I 1. TV Engineering 2. Electronic Switching Systems 3. System Design through Verilog 	4			3
6	Elective II 1.Embedded Systems 2. Analog IC Design 3.Network Security & Cryptography	4			3
7	Micro Wave Engineering & Optical Lab			2	2
8	Digital Signal Processing Lab			2	2
	Total Credits				22

IV Year - II Semester

S.No.	Subjects	L	Т	Р	Credits
1	Cellular Mobile Communications	4			3
2	Electronic Measurements and	4			3
Δ	Instrumentation				
3	Satellite Communications	4			3
4	Elective III 1.Wireless sensors & Networks 2. Digital IC Design 3. Operating Systems	4			3
5	Seminar		3		2
6	Project				10
	Total Credits				24

Total Course Credits = 48+44 + 42 + 46 = 180

Syllabus

I Year - I Semester	L	Т	Р	С
	4	0	0	3

ENGLISH - I

Introduction:

In view of the growing importance of English as a tool for global communication and the consequent emphasis on training the students to acquire communicative competence, the syllabus has been designed to develop linguistic and communicative competence of the students of Engineering.

As far as the detailed Textbooks are concerned, the focus should be on the skills of listening, speaking, reading and writing. The nondetailed Textbooks are meant for extensive reading for pleasure and profit.

Thus the stress in the syllabus in primarily on the development of communicative skills and fostering of ideas.

Objectives:

- 1. To imporve the language proficiency of the students in English with emphasis on LSRW skills.
- 2. To enable the students to study and comprehend the prescribed lessons and subjects more effectively relating to their theorotical and practical components.
- 3. To develop the communication skills of the students in both formal and informal situations.

LISTENING SKILLS:

Objectives:

- 1. To enable the students to appreciate the role of listening skill and improve their pronounciation.
- 2. To enable the students to comprehend the speech of people belonging to different backgrounds and regions.
- 3. To enable the students to listen for general content, to fill up information and for specific information.

SPEAKING SKILLS:

Objectives:

- 1. To make the students aware of the importance of speaking for their personal and professional communication.
- 2. To enable the students to express themselves fluently and accurately in social and professional success.
- 3. To help the students describe objects, situations and people.
- 4. To make the students participate in group activities like roleplays, discussions and debates.
- 5. To make the students particiapte in Just a Minute talks.

READING SKILLS:

Objectives:

- 1. To enable the students to comprehend a text through silent reading.
- 2. To enable the students to guess the meanings of words, messages and inferences of texts in given contexts.
- 3. To enable the students to skim and scan a text.

- 4. To enable the students to identify the topic sentence.
- 5. To enable the students to identify discourse features.
- 6. To enable the students to make intensive and extensive reading.

WRITING SKILLS:

Objectives:

- 1. To make the students understand that writing is an exact formal skills.
- 2. To enable the students to write sentences and paragraphs.
- 3. To make the students identify and use appropriate vocabulary.
- 4. To enable the students to narrate and describe.
- 5. To enable the students capable of note-making.
- 6. To enable the students to write coherently and cohesively.
- 7. To make the students to write formal and informal letters.
- 8. To enable the students to describe graphs using expressions of comparision.
- 9. To enable the students to write techincal reports.

Methodology:

- 1. The class are to be learner-centered where the learners are to read the texts to get a comprehensive idea of those texts on their own with the help of the peer group and the teacher.
- 2. Integrated skill development methodology has to be adopted with focus on individual language skills as per the tasks/exercise.
- 3. The tasks/exercises at the end of each unit should be completed by the learners only and the teacher interventionis perimitted as per the complexity of the task/exercise.
- 4. The teacher is expected to use supplementary material wherever necessary and also generate activities/tasks as per the requirement.
- 5. The teacher is perimitted to use lecture method when a completely new concept is introduced in the class.

Assessment Procedure: Theory

- 1. The formative and summative assessment procedures are to be adopted (mid exams and end semester examination).
- 2. Neither the formative nor summative assessment procedures should test the memory of the content of the texts given in the textbook. The themes and global comprehension of the units in the present day context with application of the langauge skills learnt in the unit are to be tested.
- 3. Only new unseen passages are to be given to test reading skills of the learners. Written skills are to be tested from sentence level to essay level. The communication formats—emails,letters and reports-- are to be tested along with appropriate language and expressions.
- 4. Examinations:

I mid exam + II mid exam (15% for descriptive tests+10% for online tests)= 25%

(80% for the best of two and 20% for the other)

Assignments= 5%

End semester exams=70%

5. Three take home assignments are to be given to the learners where they will have to read texts from the reference books list or other sources and write their gist in their own words.

The following text books are recommended for study in I B.Tech I Semester (Common for all branches)and I B.Pharma I Sem of JNTU Kakinada from the academic year 2016-17

(R-16 Regualtions)

DETAILED TEXTBOOK:

ENGLISH FOR ENGINEERS AND TECHNOLOGISTS, Published by Orient Blackswan Pvt Ltd

NON-DETAILED TEXTBOOK:

PANORAMA: A COURSE ON READING, Published by Oxford University Press India

The course content along with the study material is divided into six units.

UNIT I:

1. 'Human Resources' from English for Engineers and Technologists.

OBJECTIVE:

To develop human resources to serve the society in different ways.

OUTCOME:

The lesson motivates the readers to develop their knowledge different fields and serve the society accordingly.

2. 'An Ideal Family' from Panorama: A Course on Reading

OBJECTIVE:

To develop extensive reading skill and comprehension for pleasure and profit.

OUTCOME:

Acquisition of writing skills

UNIT 2:

1. 'Transport: Problems and Solutions' from English for Engineers and Technologists.

OBJECTIVE:

To highlight road safety measures whatever be the mode of transport.

OUTCOME:

The lesson motivates the public to adopt road safety measures.

2. 'War' from 'Panorama : A Course on Reading'

OBJECTIVE:

To develop extensive reading skill and comprehension for pleasure and profit.

OUTCOME:

Acquisition of writing skills

UNIT 3:

1. 'Evaluating Technology' from English for Engineers and Technologists.

OBJECTIVE:

To highlight the advantages and disadvantages of technology.

OUTCOME:

The lesson creates an awareness in the readers that mass production is ultimately detrimental to biological survival.

2. 'The Verger' from 'Panorama : A Course on Reading'

OBJECTIVE:

To develop extensive reading skill and comprehension for pleasure and profit.

OUTCOME:

Acquisition of writing skills

UNIT 4:

1. 'Alternative Sources of Energy' from English for Engineers and Technologists.

OBJECTIVE:

To bring into focus different sources of energy as alternatives to the depleting sources.

OUTCOME:

The lesson helps to choose a source of energy suitable for rural India.

2. 'The Scarecrow' from Panorama : A Course on Reading

OBJECTIVE:

To develop extensive reading skill and comprehension for pleasure and profit.

OUTCOME:

Acquisition of writing skills

UNIT 5:

1. 'Our Living Environment' from English for Engineers and Technologists.

OBJECTIVE:

To highlight the fact that animals must be preserved beacuase animal life is precious.

OUTCOME:

The lesson creates an awareness in the reader as to the usefulness of animals for the human society.

2. 'A Village Host to Nation' from Panorama : A Course on Reading

OBJECTIVE:

To develop extensive reading skill and comprehension for pleasure and profit.

OUTCOME:

Acquisition of writing skills

UNIT 6:

1. 'Safety and Training' from English for Engineers and Technologists.

OBJECTIVE:

To highlight the possibility of accidents in laboratories, industries and other places and to follow safety measures.

OUTCOME:

The lesson helps in identifying safety measures against different varieties of accidents at home and in the workplace.

2. 'Martin Luther King and Africa' from Panorama : A Course on Reading

OBJECTIVE:

To develop extensive reading skill and comprehension for pleasure and profit.

OUTCOME:

Acquisition of writing skills

NOTE:

All the exercises given in the prescribed lessons in both detailed and non-detailed textbooks relating to the theme and language skills must be covered.

OVERALL COURSE OUTCOME:

- 1. Using English languages, both written and spoken, competently and correctly.
- 2. Improving comprehension and fluency of speech.
- **3.** Gaining confidence in using English in verbal situations.

MODEL QUESTION PAPER FOR THEORY

PART- I

Six short answer questions on 6 unit themes

One question on eliciting student's response to any of the themes

PART-II

Each question should be from one unit and the last question can be a combination of two or more units.

Each question should have 3 sub questions: A,B & C

A will be from the main text: 5 marks

B from non-detailed text: 3 marks

C on grammar and Vocabulary: 6 marks

I Year - I Semester	L	Т	Р	С
1 Tear - I Semester	4	0	0	3

MATHEMATICS-I

Course Objectives:

- 1. The course is designed to equip the students with the necessary mathematical skills and techniques that are essential for an engineering course.
- 2. The skills derived from the course will help the student from a necessary base to develop analytic and design concepts.

Course Outcomes: At the end of the Course, Student will be able to:

- 1. Solve linear differential equations of first, second and higher order.
- 2. Determine Laplace transform and inverse Laplace transform of various functions and use Laplace transforms to determine general solution to linear ODE.
- 3. Calculate total derivative, Jocobian and minima of functions of two variables.

UNIT I: Differential equations of first order and first degree:

Linear-Bernoulli-Exact-Reducible to exact.

Applications: Newton's Law of cooling-Law of natural growth and decay-Orthogonal trajectories- Electrical circuits- Chemical reactions.

UNIT II: Linear differential equations of higher order:

Non-homogeneous equations of higher order with constant coefficients with RHS term of the type e^{ax} , sin ax, cos ax, polynomials in x, $e^{ax} V(x)$, xV(x)- Method of Variation of parameters. Applications: LCR circuit, Simple Harmonic motion.

UNIT III: Laplace transforms:

Laplace transforms of standard functions-Shifting theorems - Transforms of derivatives and integrals – Unit step function –Dirac's delta function- Inverse Laplace transforms– Convolution theorem (with out proof).

Applications: Solving ordinary differential equations (initial value problems) using Laplace transforms.

UNIT IV: Partial differentiation:

Introduction- Homogeneous function-Euler's theorem-Total derivative-Chain rule-Generalized Mean value theorem for single variable (without proof)-Taylor's and Mc Laurent's series expansion of functions of two variables–Functional dependence- Jacobian.

Applications: Maxima and Minima of functions of two variables without constraints and Lagrange's method (with constraints).

UNIT V: First order Partial differential equations:

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions –solutions of first order linear (Lagrange) equation and nonlinear (standard types) equations.

UNIT VI: Higher order Partial differential equations:

Solutions of Linear Partial differential equations with constant coefficients. RHS term of the type e^{ax+by} , $\sin(ax+by)$, $\cos(ax+by)$, $x^m y^n$. Classification of second order partial differential equations.

Text Books:

- 1. **B.S.Grewal,** Higher Engineering Mathematics, 43rd Edition, Khanna Publishers.
- 2. N.P.Bali, Engineering Mathematics, Lakshmi Publications.

Reference Books:

- 1. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India
- Micheael Greenberg, Advanced Engineering Mathematics, 9th edition, Pearson edn
- 3. Dean G. Duffy, Advanced engineering mathematics with MATLAB, CRC Press
- 4. Peter O'neil, Advanced Engineering Mathematics, Cengage Learning.
- 5. Srimanta Pal, Subodh C.Bhunia, Engineering Mathematics, Oxford University Press.
- 6. Dass H.K., Rajnish Verma. Er., Higher Engineering Mathematics, S. Chand Co. Pvt. Ltd, Delhi.

I Veen I Comester	L	Т	Р	С
I Year - I Semester	4	0	0	3

MATHEMATICS-II (Numerical Methods and Complex Variables)

UNIT I: Solution of Algebraic and Transcendental Equations:

Introduction- Bisection method – Method of false position – Iteration method – Newton-Raphson method (One variable and simultaneous Equations).

UNIT II: Interpolation:

Introduction- Errors in polynomial interpolation – Finite differences- Forward differences- Backward differences –Central differences – Symbolic relations and separation of symbols - Differences of a polynomial-Newton's formulae for interpolation – Interpolation with unequal intervals - Lagrange's interpolation formula.

UNIT III: Numerical Integration and solution of Ordinary Differential equations:

Trapezoidal rule- Simpson's 1/3rd and 3/8th rule-Solution of ordinary differential equations by Taylor's series-Picard's method of successive approximations-Euler's method - Runge-Kutta method (second and fourth order).

Unit-IV: Functions of a complex variable

Complex function, Real and Imaginary parts of Complex function, Limit, Continuity and Derivative of complex function, Cauchy-Riemann equations, Analytic function, entire function, singular point, conjugate function, C - R equations in polar form, Harmonic functions, Milne-Thomson method, Simple applications to flow problems,

Unit-V: Series Expansion and Complex Integration

Line integral of a complex function, Cauchy's theorem(only statement), Cauchy's Integral Formula. Absolutely convergent and uniformly convergent of series of complex terms, Radius of convergence, Taylor's series, Maclaurin's series expansion, Laurent's series.

Unit-VI: Singularities and Residue Theorem

Zeros of an analytic function, Singularity, Isolated singularity, Removable singularity, Essential singularity, pole of order m, simple pole, Residues, Residue theorem, Calculation of residues, Residue at a pole of order m, Evaluation of real definite integrals: Integration around the unit circle, Integration around semi circle, Indenting the contours having poles on the real axis.

Text Books:

- 1. **B.S.GREWAL**, Higher Engineering Mathematics, 43rd Edition, Khanna Publishers.
- 2. N.P.Bali, Engineering Mathematics, Lakshmi Publications.

Reference Books:

- 1. **DEAN G. DUFFY,** Advanced engineering mathematics with MATLAB, CRC Press
- 2. V.RAVINDRANATH and P.VIJAYALAKSHMI, Mathematical Methods, Himalaya Publishing House.
- 3. ERWIN KREYSZIG, Advanced Engineering Mathematics, 10th Edition, Wiley-India
- 4. **DAVID KINCAID, WARD CHENEY**, Numerical Analysis-Mathematics of Scientific Computing, 3rd Edition, Universities Press.

I Year - I Semester	L	Т	Р	С
1 Tear - I Semester	4	0	0	3

APPLIED PHYSICS

<u>**OBJECTIVES:**</u> Physics curriculum which is re-oriented to the needs of Circuital branches of graduate engineering courses offered by JNTUniv.Kkd. that serves as a transit to understand the branch specific advanced topics. The courses are designed to:

- Impart Knowledge of Physical Optics phenomena like Interference, Diffraction and Polarization involving required to design instruments with higher resolution.
- Teach Concepts of coherent sources, its realization and utility optical instrumentation.
- Study the concepts regarding the bulk response of materials to the EM fields and their analytically study in the back-drop of basic quantum mechanics.
- Understand the physics of Semiconductors and their working mechanism for their utility in sensors.

UNIT-I

INTERFERENCE: Principle of Superposition – Coherent Sources – Interference in thin films (reflection geometry) – Newton's rings – construction and basic principle of Interferometers.

UNIT-II

DIFFRACTION: Fraunhofer diffraction at single slit - Cases of double slit, N-slits & Circular Aperture (Qualitative treatment only)-Grating equation - Resolving power of a grating, Telescope and Microscopes.

UNIT-III

POLARIZATION: Types of Polarization – Methods of production - Nicol Prism -Quarter wave plate and Half Wave plate – Working principle of Polarimeter (Sacharimeter).

LASERS: Characteristics– Stimulated emission – Einstein's Transition Probabilities- Pumping schemes - Ruby laser – Helium Neon laser.

UNIT-IV

ELECTROMAGNETIC FIELDS: Scalar and Vector Fields – Electric Potential- Gradient, Divergence of fields – Gauss and Stokes theorems-Propagation of EM waves through dielectric medium.

UNIT-V

QUANTUM MECHANICS: Introduction - Matter waves – Schröedinger Time Independent and Time Dependent wave equations – Particle in a box. FREE ELECTRON THEORY: Defects of Classical free electron theory –Quantum Free electron theory - concept of Fermi Energy.

UNIT-VI

BAND THEORY OF SOLIDS: Bloch's theorem (qualitative) – Kronig – Penney model – energy bands in crystalline solids – classification of crystalline solids – effective mass of electron & concept of hole.

SEMICONDUCTOR PHYSICS: Conduction – Density of carriers in Intrinsic and Extrinsic semiconductors – Drift & Diffusion – relevance of Einstein's equation- Hall effect in semiconductors

Outcome: Construction and working details of instruments, ie., Interferometer, Diffractometer and Polarimeter are learnt. Study EM-fields and semiconductors under the concepts of Quantum mechanics paves way for their optimal utility.

List of Text Books:

- 1. A Text book of Engineering Physics by Dr. M.N.Avadhanulu and Dr.P.G.Kshira sagar, S.Chand & Company Ltd., (2014)
- 2. 'Solid State Physics' by A.J.Dekker, Mc Millan Publishers (2011)

List of Reference Books:

- 1. Engineering Physics by D.K.Bhattacharya and Poonam Tandon, Oxford press (2015)
- 2. Applied Physics by P.K.Palanisamy, Scitech publications (2014)
- 3. Lasers and Non-Linear optics by B.B.Laud, New Age International Publishers (2008).

I Veen I Comeston	L	Т	Р
I Year - I Semester	4	0	0

COMPUTER PROGRAMMING

Learning objectives:

Formulating algorithmic solutions to problems and implementing algorithms in C.

• Notion of Operation of a CPU, Notion of an algorithm and computational procedure, editing and executing programs in Linux.

С

3

- Understanding branching, iteration and data representation using arrays.
- Modular programming and recursive solution formulation.
- Understanding pointers and dynamic memory allocation.
- Understanding miscellaneous aspects of C.
- Comprehension of file operations.

UNIT-I:

History and Hardware - Computer Hardware, Bits and Bytes, Components, Programming Languages - Machine Language, Assembly Language, Low- and High-Level Languages, Procedural and Object-Oriented Languages, Application and System Software, The Development of C Algorithms The Software Development Process.

UNIT-II:

Introduction to C Programming- Identifiers, The main () Function, The printf () Function
Programming Style - Indentation, Comments, Data Types, Arithmetic Operations, Expression Types, Variables and Declarations, Negation, Operator Precedence and Associativity, Declaration Statements, Initialization.
Assignment - Implicit Type Conversions, Explicit Type Conversions (Casts), Assignment Variations, Mathematical Library Functions, Interactive Input, Formatted Output, Format Modifiers.

UNIT -III:

Control Flow-Relational Expressions - Logical Operators:

Selection: if-else Statement, nested if, examples, Multi-way selection: switch, else-if, examples. **Repetition**: Basic Loop Structures, Pretest and Posttest Loops, Counter-Controlled and Condition-Controlled Loops, The while Statement, The for Statement, Nested Loops, The do-while Statement.

UNIT-IV

Modular Programming: Function and Parameter Declarations, Returning a Value, Functions with Empty Parameter Lists, Variable Scope, Variable Storage Class, Local Variable Storage Classes, Global Variable Storage Classes, Pass by Reference, Passing Addresses to a Function, Storing Addresses, Using Addresses, Declaring and Using Pointers, Passing Addresses to a Function.

Case Study: Swapping Values, Recursion - Mathematical Recursion, Recursion versus Iteration.

UNIT-V:

Arrays & Strings

Arrays: One-DimensionalArrays, Input and Output of Array Values, Array Initialization, Arrays as Function Arguments, Two-Dimensional Arrays, LargerDimensionalArrays- Matrices

Strings: String Fundamentals, String Input and Output, String Processing, Library Functions

UNIT-VI:

Pointers, Structures, Files

Pointers: Concept of a Pointer, Initialisation of pointer variables, pointers as function arguments, passing by address, Dangling memory, address arithmetic, character pointers and functions, pointers to pointers, Dynamic memory management functions, command line arguments.

Structures: Derived types, Structures declaration, Initialization of structures, accessing structures, nested structures, arrays of structures, structures and functions, pointers to structures, self referential structures, unions, typedef, bit-fields.

Data Files: Declaring, Opening, and Closing File Streams, Reading from and Writing to Text Files, Random File Access

Outcomes:

- Understand the basic terminology used in computer programming
- Write, compile and debug programs in C language.
- Use different data types in a computer program.
- Design programs involving decision structures, loops and functions.
- Explain the difference between call by value and call by reference
- Understand the dynamics of memory by the use of pointers
- Use different data structures and create/update basic data files.

Text Books:

- 1. ANSI C Programming, Gary J. Bronson, Cengage Learning.
- 2. Programming in C, Bl Juneja Anita Seth, Cengage Learning.
- 3. The C programming Language, Dennis Richie and Brian Kernighan, Pearson Education.

Reference Books:

- 1. C Programming-A Problem Solving Approach, Forouzan, Gilberg, Cengage.
- 2. Programming with C, Bichkar, Universities Press.
- 3. Programming in C, ReemaThareja, OXFORD.
- 4. C by Example, Noel Kalicharan, Cambridge.

I Year - I Semester		L	Т	Р	С
1 1 cai • 1 Semester		1	0	3	3
	ENGINEERING DRAWING				

Objective: Engineering drawing being the principle method of communication for engineers, the objective is to introduce the students, the techniques of constructing the various types of polygons, curves and scales. The

objective is also to visualize and represent the 3D objects in 2D planes with proper dimensioning, scaling etc.

Unit I

Objective: To introduce the students to use drawing instruments and to draw polygons, Engg. Curves.

Polygons: Constructing regular polygons by general methods, inscribing and describing polygons on circles.

Curves: Parabola, Ellipse and Hyperbola by general methods, cycloids, involutes, tangents & normals for the curves.

Unit II

Objective: To introduce the students to use scales and orthographic projections, projections of points & simple lines.

Scales: Plain scales, diagonal scales and vernier scales

Orthographic Projections: Horizontal plane, vertical plane, profile plane, importance of reference lines, projections of points in various quadrants, projections of lines, lines parallel either to of the reference planes (HP,VP or PP)

Unit III

Objective: The objective is to make the students draw the projections of the lines inclined to both the planes.

Projections of straight lines inclined to both the planes, determination of true lengths, angle of inclination and traces- HT, VT

Unit IV

Objective: The objective is to make the students draw the projections of the plane inclined to both the planes.

Projections of planes: regular planes perpendicular/parallel to one plane and inclined to the other reference plane; inclined to both the reference planes.

Unit V

Objective: The objective is to make the students draw the projections of the various types of solids in different positions inclined to one of the planes.

Projections of Solids - Prisms, Pyramids, Cones and Cylinders with the axis inclined to one of the planes.

Unit VI

Objective: The objective is to represent the object in 3D view through isometric views. The student will be able to represent and convert the isometric view to orthographic view and vice versa.

Conversion of isometric views to orthographic views; Conversion of orthographic views to isometric views.

Text Books:

- 1. Engineering Drawing by N.D. Butt, Chariot Publications
- 2. Engineering Drawing by Agarwal & Agarwal, Tata McGraw Hill Publishers

Reference Books:

- 1. Engineering Drawing by K.L.Narayana & P. Kannaiah, Scitech Publishers
- 2. Engineering Graphics for Degree by K.C. John, PHI Publishers
- 3. Engineering Graphics by PI Varghese, McGrawHill Publishers
- 4. Engineering Drawing + AutoCad K Venugopal, V. Prabhu Raja, New Age

I Year - I Semester		L	Т	Р	С
		0	0	3	2
	ENGLISH - COMMUNICATION SKILLS LA	B-1			

PRESCRIBED LAB MANUAL FOR SEMESTER I:

'INTERACT: English Lab Manual for Undergraduate Students' Published by Orient Blackswan Pvt Ltd.

OBJECTIVES:

To enable the students to learn through practice the communication skills of listening, speaking, reading and writing.

OUTCOME:

A study of the communicative items in the laboratory will help the students become successful in the competitive world.

The course content along with the study material is divided into six units.

UNIT 1:

- 1. WHY study Spoken English?
- 2. Making Inqueries on the phone, thanking and responding to Thanks Practice work.

UNIT 2:

1. Responding to Requests and asking for Directions Practice work.

UNIT 3:

- 1. Asking for Clarifications, Inviting, Expressing Sympathy, Congratulating
- 2. Apologising, Advising, Suggesting, Agreeing and Disagreeing Practice work.

UNIT 4:

1. Letters and Sounds Practice work.

UNIT 5:

1. The Sounds of English Practice work.

UNIT 6:

- 1. Pronunciation
- 2. Stress and Intonation Practice work.

Assessment Procedure: Laboratory

- 1. Every lab session (150 minutes) should be handled by not less than two teachers (three would be ideal) where each faculty has to conduct a speaking activity for 20/30 students.
- 2. The teachers are to assess each learner in the class for not less than 10 speaking activities, each one to be assessed for 10 marks or 10%. The average of 10 day-to-day activity assessments is to be calculated for 10 marks for internal assessment.

The rubric given below has to be filled in for all the students for all activities.

The rubric to assess the learners:

Body language	Fluency & Audibilit y	Clarity in Speech	Neutraliz ation of accent	Apj	propriate nguage	Total 10 marks	Remarks
Gesture Eye s & Contac Posture t s				Gram mar	Vocabulary & expressions		

• Lab Assessment: Internal (25 marks)

1. Day-to-Day activities: 10 marks

- 2. Completing the exercises in the lab manual: 5 marks
- 3. Internal test (5 marks written and 5 marks oral)

• Lab Assessment: External (50 marks)

- 1. Written test: 20 marks (writing a dialogue, note-taking and answering questions on listening to an audio recording.
- 2. Oral: Reading aloud a text or a dialogue- 10 marks
- 3. Viva-Voce by the external examiner: 20 marks

Reference Books:

- 1. Strengthen your communication skills by Dr M Hari Prasad, Dr Salivendra Raju and Dr G Suvarna Lakshmi, Maruti Publications.
- 2. English for Professionals by Prof Eliah, B.S Publications, Hyderabad.
- 3. Unlock, Listening and speaking skills 2, Cambridge University Press
- 4. Spring Board to Success, Orient BlackSwan
- 5. A Practical Course in effective english speaking skills, PHI
- 6. Word power made handy, Dr shalini verma, Schand Company
- 7. Let us hear them speak, Jayashree Mohanraj, Sage texts
- 8. Professional Communication, Aruna Koneru, Mc Grawhill Education
- 9. Cornerstone, Developing soft skills, Pearson Education

I Year - I Semester	L	Т	Р	С
	0	0	3	2

APPLIED / ENGINEERING PHYSICS LAB

(Any 10 of the following listed experiments)

Objective: *Training field oriented Engineering graduates to handle instruments and their design methods to improve the accuracy of measurements.*

LIST OF EXPERIMENTS:

- 1. Determination of wavelength of a source-Diffraction Grating-Normal incidence.
- 2. Newton's rings Radius of Curvature of Plano Convex Lens.
- 3. Determination of thickness of a spacer using wedge film and parallel interference fringes.
- 4. Determination of Rigidity modulus of a material- Torsional Pendulum.
- 5. Determination of Acceleration due to Gravity and Radius of Gyration- Compound Pendulum.
- 6. Melde's experiment Transverse and Longitudinal modes.
- 7. Verification of laws of vibrations in stretched strings Sonometer.
- 8. Determination of velocity of sound Volume Resonator.
- 9. L- C- R Series Resonance Circuit.
- 10. Study of I/V Characteristics of Semiconductor diode.
- 11. I/V characteristics of Zener diode.
- 12. Characteristics of Thermistor Temperature Coefficients.
- 13. Magnetic field along the axis of a current carrying coil Stewart and Gee's apparatus.
- 14. Energy Band gap of a Semiconductor p n junction.
- 15. Hall Effect in semiconductors.
- 16. Time constant of CR circuit.
- 17. Determination of wavelength of laser source using diffraction grating.
- 18. Determination of Young's modulus by method of single cantilever oscillations.
- 19. Determination of lattice constant lattice dimensions kit.
- 20. Determination of Planck's constant using photocell.
- 21. Determination of surface tension of liquid by capillary rise method.

Outcome: *Physics lab curriculum gives fundamental understanding of design of an instrument with targeted accuracy for physical measurements.*

I Year - I Semester	L	Т	Р	С
1 Year - I Semester	0	0	2	0

APPLIED / ENGINEERING PHYSICS VIRTUAL LABS - ASSIGNMENTS

(Constitutes 5% marks of 30marks of Internal-component)

Objective: *Training Engineering students to prepare a technical document and improving their writing skills.*

LIST OF EXPERIMENTS

- 1. Hall Effect
- 2. Crystal Structure
- 3. Hysteresis
- 4. Brewster's angle
- 5. Magnetic Levitation / SQUID
- 6. Numerical Aperture of Optical fiber
- 7. Photoelectric Effect
- 8. Simple Harmonic Motion
- 9. Damped Harmonic Motion
- 10. LASER Beam Divergence and Spot size
- 11. B-H curve
- 12. Michelson's interferometer
- 13. Black body radiation

URL: www.vlab.co.in

Outcome: *Physics Virtual laboratory curriculum in the form of assignment ensures an engineering graduate to prepare a /technical/mini-project/ experimental report with scientific temper.*

ENGINEERING WORKSHOP & IT WORKSHOP

ENGINEERING WORKSHOP:

Course Objective: To impart hands-on practice on basic engineering trades and skills.

Note: At least two exercises to be done from each trade.

Trade:

Carpentry	1. T-Lap Joint
1 0	2. Cross Lap Joint
	3. Dovetail Joint
	4. Mortise and Tenon Joint
Fitting	1. Vee Fit
-	2. Square Fit
	3. Half Round Fit
	4. Dovetail Fit
Black Smithy	1. Round rod to Square
-	2. S-Hook
	3. Round Rod to Flat Ring
	4. Round Rod to Square headed bolt
House Wiring	1. Parallel / Series Connection of three bulbs
	2. Stair Case wiring
	3. Florescent Lamp Fitting
	4. Measurement of Earth Resistance
Tin Smithy	1. Taper Tray
	2. Square Box without lid
	3. Open Scoop
	4. Funnel

IT WORKSHOP:

OBJECTIVES:

- Understand the basic components and peripherals of a computer.
- To become familiar in configuring a system.
- Learn the usage of productivity tools.
- Acquire knowledge about the netiquette and cyber hygiene.
- Get hands on experience in trouble shooting a system?

1. System Assembling, Disassembling and identification of Parts / Peripherals

2. **Operating System Installation**-Install Operating Systems like Windows, Linux along with necessary Device Drivers.

3. MS-Office / Open Office

- a. Word Formatting, Page Borders, Reviewing, Equations, symbols.
- b. Spread Sheet organize data, usage of formula, graphs, charts.
- c. **Power point** features of power point, guidelines for preparing an effective presentation.
- d. Access- creation of database, validate data.
- 4. Network Configuration & Software Installation-Configuring TCP/IP, proxy and firewall settings. Installing application software, system software & tools.
- 5. Internet and World Wide Web-Search Engines, Types of search engines, netiquette, cyber hygiene.
- 6. Trouble Shooting-Hardware trouble shooting, Software trouble shooting.
- 7. MATLAB- basic commands, subroutines, graph plotting.
- 8. LATEX-basic formatting, handling equations and images.

OUTCOMES:

- Common understanding of concepts, patterns of decentralization implementation in Africa †
- Identified opportunities for coordinated policy responses, capacity building and implementation of best practices †
- Identified instruments for improved decentralization to the local level †
- Identified strategies for overcoming constraints to effective decentralization and sustainable management at different levels

Text Books:

- 1. Computer Hardware, Installation, Interfacing, Troubleshooting and Maintenance, K.L. James, Eastern Economy Edition.
- 2. Microsoft Office 2007: Introductory Concepts and Techniques, Windows XP Edition by Gary B. Shelly, Misty E. Vermaat and Thomas J. Cashman (2007, Paperback).
- 3. LATEX- User's Guide and Reference manual, Leslie Lamport, Pearson, LPE, 2/e.
- 4. Getting Started with MATLAB: A Quick Introduction for Scientists and Engineers, Rudraprathap, Oxford University Press, 2002.
- 5. Scott Mueller's Upgrading and Repairing PCs, 18/e, Scott. Mueller, QUE, Pearson, 2008
- 6. The Complete Computer upgrade and repair book, 3/e, Cheryl A Schmidt, Dreamtech.
- 7. Comdex Information Technology course tool kit Vikas Gupta, WILEY Dreamtech.
- 8. Introduction to Information Technology, ITL Education Solutions limited, Pearson Education.

I Year - II Semester

L	Т	Р	С
4	0	0	3

ENGLISH -II

Introduction:

In view of the growing importance of English as a tool for global communication and the consequent emphasis on training the students to acquire communicative competence, the syllabus has been designed to develop linguistic and communicative competence of the students of Engineering.

As far as the detailed Textbooks are concerned, the focus should be on the skills of listening, speaking, reading and writing. The nondetailed Textbooks are meant for extensive reading for pleasure and profit.

Thus the stress in the syllabus in primarily on the development of communicative skills and fostering of ideas.

Objectives:

- 1. To imporve the language proficiency of the students in English with emphasis on LSRW skills.
- 2. To enable the students to study and comprehend the prescribed lessons and subjects more effectively relating to their theorotical and practical components.
- 3. To develop the communication skills of the students in both formal and informal situations.

LISTENING SKILLS:

Objectives:

- 1. To enable the students to appreciate the role of listening skill and improve their pronounciation.
- 2. To enable the students to comprehend the speech of people belonging to different backgrounds and regions.
- 3. To enable the students to listen for general content, to fill up information and for specific information.

SPEAKING SKILLS:

Objectives:

- 1. To make the students aware of the importance of speaking for their personal and professional communication.
- 2. To enable the students to express themselves fluently and accurately in social and professional success.
- 3. To help the students describe objects, situations and people.
- 4. To make the students participate in group activities like roleplays, discussions and debates.
- 5. To make the students particiapte in Just a Minute talks.

READING SKILLS:

Objectives:

- 1. To enable the students to comprehend a text through silent reading.
- 2. To enable the students to guess the meanings of words, messages and inferences of texts in given contexts.
- 3. To enable the students to skim and scan a text.
- 4. To enable the students to identify the topic sentence.
- 5. To enable the students to identify discourse features.
- 6. To enable the students to make intensive and extensive reading.

WRITING SKILLS:

Objectives:

- 1. To make the students understand that writing is an exact formal skills.
- 2. To enable the students to write sentences and paragraphs.
- 3. To make the students identify and use appropriate vocabulary.
- 4. To enable the students to narrate and describe.
- 5. To enable the students capable of note-making.
- 6. To enable the students to write coherently and cohesively.
- 7. To make the students to write formal and informal letters.
- 8. To enable the students to describe graphs using expressions of comparision.
- 9. To enable the students to write techincal reports.

Methodology:

- 1. The class are to be learner-centered where the learners are to read the texts to get a comprehensive idea of those texts on their own with the help of the peer group and the teacher.
- 2. Integrated skill development methodology has to be adopted with focus on individual language skills as per the tasks/exercise.
- 3. The tasks/exercises at the end of each unit should be completed by the learners only and the teacher interventionis perimitted as per the complexity of the task/exercise.
- 4. The teacher is expected to use supplementary material wherever necessary and also generate activities/tasks as per the requirement.
- 5. The teacher is perimitted to use lecture method when a completely new concept is introduced in the class.

Assessment Procedure: Theory

- 1. The formative and summative assessment procedures are to be adopted (mid exams and end semester examination).
- 2. Neither the formative nor summative assessment procedures should test the memory of the content of the texts given in the textbook. The themes and global comprehension of the units in the present day context with application of the langauge skills learnt in the unit are to be tested.
- 3. Only new unseen passages are to be given to test reading skills of the learners. Written skills are to be tested from sentence level to essay level. The communication formats—emails,letters and reports-- are to be tested along with appropriate language and expressions.
- 4. Examinations:

I mid exam + II mid exam (15% for descriptive tests+10% for online tests)= 25%

(80% for the best of two and 20% for the other)

Assignments= 5%

End semester exams=70%

5. Three take home assignments are to be given to the learners where they will have to read texts from the reference books list or other sources and write their gist in their own words.

The following text books are recommended for study in I B.Tech II Semester (Common for all branches)and I B.Pharma II Sem of JNTU Kakinada from the academic year 2016-17 (**R-16 Regulations**)

DETAILED TEXTBOOK: ENGLISH ENCOUNTERS Published by Maruthi Publishers.

DETAILED NON-DETAIL: THE GREAT INDIAN SCIENTISTS Published by Cenguage learning

The course content along with the study material is divided into six units.

UNIT 1:

1. 'The Greatest Resource- Education' from English Encounters

OBJECTIVE:

Schumacher describes the education system by saying that it was mere training, something more than mere knowledge of facts.

OUTCOME:

The lesson underscores that the ultimate aim of Education is to enhance wisdom.

2. ' A P J Abdul Kalam' from The Great Indian Scientists.

OBJECTIVE:

The lesson highlights Abdul Kalam's contributions to Indian science and the awards he received.

OUTCOME:

Abdul Kalam's simple life and service to the nation inspires the readers to follow in his footsteps.

UNIT 2:

1. ' A Dilemma' from English Encounters

OBJECTIVE: The lesson centres on the pros and cons of the development of science and technology.

OUTCOME: The lesson enables the students to promote peaceful co-existence and universal harmony among people and society.

2. 'C V Raman' from The Great Indian Scientists.

OBJECTIVE:

The lesson highlights the dedicated research work of C V Raman and his achievements in Physics.

OUTCOME:

The Achievements of C V Raman are inspiring and exemplary to the readers and all scientists.

UNIT 3:

1. 'Cultural Shock': Adjustments to new Cultural Environments from English Encounters.

OBJECTIVE:

The lesson depicts of the symptoms of Cultural Shock and the aftermath consequences.

OUTCOME:

The lesson imparts the students to manage different cultural shocks due to globalization.

2. 'Homi Jehangir Bhabha' from The Great Indian Scientists.

OBJECTIVE:

The lesson highlights Homi Jehangir Bhabha's contributions to Indian nuclear programme as architect.

OUTCOME:

The seminal contributions of Homi Jehangir Bhabha to Indian nuclear programme provide an aspiration to the readers to serve the nation and sterngthen it.

UNIT 4:

1. 'The Lottery' from English Encounters.

OBJECTIVE:

The lesson highlights insightful commentary on cultural traditions.

OUTCOME:

The theme projects society's need to re examine its traditions when they are outdated.

2. 'Jagadish Chandra Bose' from The Great Indian Scientists.

OBJECTIVE:

The lesson gives an account of the unique discoveries and inventions of Jagadish Chandra Bose in Science.

OUTCOME: The Scientific discoveries and inventions of Jagadish Chandra Bose provide inspiration to the readers to make their own contributions to science and technology, and strengthen the nation.

UNIT 5:

1. 'The Health Threats of Climate Change' from English Encounters.

OBJECTIVE:

The essay presents several health disorders that spring out due to environmental changes

OUTCOME:

The lesson offers several inputs to protect environment for the sustainability of the future generations.

2. ' Prafulla Chandra Ray' from The Great Indian Scientists.

OBJECTIVE:

The lesson given an account of the experiments and discoveries in Pharmaceuticals of Prafulla Chandra Ray.

OUTCOME:

Prafulla Chandra Ray's scientific achievements and patriotic fervour provide inspiration to the reader.

UNIT 6:

1. 'The Chief Software Architect' from English Encounters

OBJECTIVE:

The lesson supports the developments of technology for the betterment of human life.

OUTCOME:

Pupil get inspired by eminent personalities who toiled for the present day advancement of software development.

2. 'Srinivasa Ramanujan' from The Great Indian Scientists.

OBJECTIVE:

The lesson highlights the extraordinary achievements of Srinivasa Ramanujan, a great mathematician and the most romantic figure in mathematics.

OUTCOME:

The lesson provides inspiration to the readers to think and tap their innate talents.

NOTE:

All the exercises given in the prescribed lessons in both detailed and non-detailed textbooks relating to the theme and language skills must be covered.

MODEL QUESTION PAPER FOR THEORY

PART- I

Six short answer questions on 6 unit themes

One question on eliciting student's response to any of the themes

PART-II

Each question should be from one unit and the last question can be a combination of two or more units.

Each question should have 3 sub questions: A,B & C

A will be from the main text: 5 marks

B from non-detailed text: 3 marks

C on grammar and Vocabulary: 6 marks

I Year - II Semester	L	Т	Р	С
1 Tear - II Semester	4	0	0	3

MATHEMATICS-III

Course Objectives:

- 1. The course is designed to equip the students with the necessary mathematical skills and techniques that are essential for an engineering course.
- 2. The skills derived from the course will help the student from a necessary base to develop analytic and design concepts.
- 3. Understand the most basic numerical methods to solve simultaneous linear equations.

Course Outcomes: At the end of the Course, Student will be able to:

- 1. Determine rank, Eigenvalues and Eigen vectors of a given matrix and solve simultaneous linear equations.
- 2. Solve simultaneous linear equations numerically using various matrix methods.
- 3. Determine double integral over a region and triple integral over a volume.
- 4. Calculate gradient of a scalar function, divergence and curl of a vector function. Determine line, surface and volume integrals. Apply Green, Stokes and Gauss divergence theorems to calculate line, surface and volume integrals.

UNIT I: Linear systems of equations:

Rank-Echelon form-Normal form – Solution of linear systems – Gauss elimination - Gauss Jordon- Gauss Jacobi and Gauss Seidal methods. Applications: Finding the current in electrical circuits.

UNIT II: Eigen values - Eigen vectors and Quadratic forms:

Eigen values - Eigen vectors- Properties - Cayley-Hamilton theorem - Inverse and powers of a matrix by using Cayley-Hamilton theorem- Diagonalization- Quadratic forms- Reduction of quadratic form to canonical form - Rank - Positive, negative and semi definite - Index - Signature. Applications: Free vibration of a two-mass system.

UNIT III: Multiple integrals:

Curve tracing: Cartesian, Polar and Parametric forms. Multiple integrals: Double and triple integrals – Change of variables – Change of order of integration. Applications: Finding Areas and Volumes.

UNIT IV: Special functions:

Beta and Gamma functions- Properties - Relation between Beta and Gamma functions- Evaluation of improper integrals.

Applications: Evaluation of integrals.

UNIT V: Vector Differentiation:

Gradient- Divergence- Curl - Laplacian and second order operators -Vector identities. Applications: Equation of continuity, potential surfaces

UNIT VI: Vector Integration:

Line integral – Work done – Potential function – Area- Surface and volume integrals Vector integral theorems: Greens, Stokes and Gauss Divergence theorems (without proof) and related problems. Applications: Work done, Force.

Text Books:

- 1. **B.S.Grewal**, Higher Engineering Mathematics, 43rd Edition, Khanna Publishers.
- 2. N.P.Bali, Engineering Mathematics, Lakshmi Publications.

Reference Books:

- 1. Greenberg, Advanced Engineering Mathematics, 2nd edition, Pearson edn
- 2. Erwin Kreyszig, Advanced Engineering Mathematics, 10th Edition, Wiley-India
- 3. Peter O'Neil, Advanced Engineering Mathematics,7th edition, Cengage Learning.
- 4. D.W. Jordan and T.Smith, Mathematical Techniques, Oxford University Press.
- 5. Srimanta Pal, Subodh C.Bhunia, Engineering Mathematics, Oxford University Press.
- 6. Dass H.K., Rajnish Verma. Er., Higher Engineering Mathematics, S. Chand Co. Pvt. Ltd, Delhi.

I Year - II Semester	L	Т	Р	С		
	4	0	0	3		

APPLIED CHEMISTRY (Common to EEE, ECE, CSE, IT, EIE, E.Com.E,)

Knowledge of basic concepts of Chemistry for Engineering students will help them as professional engineers later in design and material selection, as well as utilizing the available resources.

Learning Objectives:

- Plastics are nowadays used in household appliances; also they are used as composites (FRP) in aerospace industries (Unit I).
- Fuels as a source of energy are a basic need of any industry, particularly industries like thermal power stations, steel industry, fertilizer industry etc., and hence they are introduced (Unit II).
- The basics for the construction of galvanic cells as well as some of the sensors used in instruments are introduced. Also if corrosion is to be controlled, one has to understand the mechanism of corrosion which itself is explained by electrochemical theory (Unit III).
- With the increase in demand, a wide variety of materials are coming up; some of them have excellent engineering properties and a few of these materials are introduced (Unit IV).
- Understanding of crystal structures will help to understand the conductivity, semiconductors and superconductors. Magnetic properties are also studied (Unit V).
- With the increase in demand for power and also with depleting sources of fossil fuels, the demand for alternative sources of fuels is increasing. Some of the prospective fuel sources are introduced (Unit VI).

UNIT I: HIGH POLYMERS AND PLASTICS

Polymerisation : Introduction- Mechanism of polymerization - Stereo regular polymers – methods of polymerization (emulsion and suspension) -Physical and mechanical properties – Plastics as engineering materials : advantages and limitations – Thermoplastics and Thermosetting plastics – Compounding and fabrication (4/5 techniques)-Preparation, properties and applications of polyethene, PVC, Bakelite Teflon and polycarbonates

Elastomers – Natural rubber- compounding and vulcanization – Synthetic rubbers : Buna S, Buna N, Thiokol and polyurethanes – Applications of elastomers.

Composite materials & Fiber reinforced plastics – Biodegradable polymers – Conducting polymers.

UNIT II: FUEL TECHNOLOGY

Fuels:- Introduction – Classification – Calorific value - HCV and LCV – Dulong's formula – Bomb calorimeter – Numerical problems – Coal — Proximate and ultimate analysis – Significance of the analyses – Liquid fuels – Petroleum- Refining – Cracking – Synthetic petrol –Petrol knocking – Diesel knocking - Octane and Cetane ratings – Anti-knock agents – Power alcohol – Bio-diesel – Gaseous fuels – Natural gas. LPG and CNG – Combustion – Calculation of air for the combustion of a fuel – Flue gas analysis – Orsat apparatus – Numerical problems on combustion.

Explosives:- Introduction, classification, examples: RDX, TNT and ammonium nitrite - rocket fuels.

UNIT III: ELECTROCHEMICAL CELLS AND CORROSION

Galvanic cells - Reversible and irreversible cells – Single electrode potential – Electro chemical series and uses of this series- Standard electrodes (Hydrogen and Calomel electrodes) - Concentration Cells – Batteries: Dry Cell - Ni-Cd cells - Ni-Metal hydride cells - Li cells - Zinc – air cells.

Corrosion:- Definition – Theories of Corrosion (electrochemical) – Formation of galvanic cells by different metals, by concentration cells, by differential aeration and waterline corrosion – Passivity of metals – Pitting corrosion - Galvanic series – Factors which influence the rate of corrosion - Protection from corrosion – Design and material selection – Cathodic protection - Protective coatings: – Surface preparation – Metallic (cathodic and anodic) coatings - Methods of application on metals (Galvanizing, Tinning, Electroplating, Electroless plating)

UNIT IV: CHEMISTRY OF ADVANCED MATERIALS

Nano materials:- Introduction – Sol-gel method & chemical reduction method of preparation – Characterization by BET method and TEM methods - Carbon nano tubes and fullerenes: Types, preparation, properties and applications *Liquid crystals:-* Introduction – Types – Applications

Superconductors :- Type-I & Type-2, properties & applications

Green synthesis:- Principles - 3or 4 methods of synthesis with examples - R₄M₄ principles

UNIT V: SOLID STATE CHEMISTRY

Types of solids - close packing of atoms and ions - BCC, FCC, structures of rock salt - cesium chloride- spinel - normal and inverse spinels,

Non-elemental *semiconducting Materials:*- Stoichiometric, controlled valency & Chalcogen photo/semiconductors, Preparation of Semiconductors - Semiconductor Devices:- p-n junction diode as rectifier – junction transistor. **Insulators** (electrical and electronic applications)

Magnetic materials:- Ferro and ferri magnetism. Hall effect and its applications.

UNIT VI: NON CONVENTIONAL ENERGY SOURCES AND STORAGE DEVICESSolar Energy: -

Introduction, application of solar energy, conversion of solar energy (Thermal

conversion & photo conversion) - photovoltaic cell: design, working and its importance

Non-conventional energy sources:

- (i) Hydropower include setup a hydropower plant (schematic diagram)
- (ii) Geothermal energy: Introduction-schematic diagram of a geothermal power plant
- (iii) Tidal and wave power: Introduction- Design and working-movement of tides and their effect on sea level.
- (iv)Ocean thermal energy: Introduction, closed-cycle, ocean thermal energy conversion (OTEC), open cycle OTEC, hybrid OTEC, schematic diagram and explanation.
- (v) Biomass and biofuels

Fuel cells: - Introduction - cell representation, H_2 - O_2 fuel cell: Design and working, advantages and limitations. Types of fuel cells: Alkaline fuel cell - methanol-oxygen - phosphoric acid fuel cells - molten carbonate fuel cells.

Outcomes: The advantages and limitations of plastic materials and their use in design would be understood. Fuels which are used commonly and their economics, advantages and limitations are discussed. Reasons for corrosion and some methods of corrosion control would be understood. The students would be now aware of materials like nanomaterials and fullerenes and their uses. Similarly liquid crystals and superconductors are understood. The importance of green synthesis is well understood and how they are different from conventional methods is also explained. Conductance phenomenon is better understood. The students are exposed to some of the alternative fuels and their advantages and limitations.

Standard Books:

1. Engineering Chemistry by Jain and Jain; Dhanpat Rai Publicating Co.

2. Engineering Chemistry by Shikha Agarwal; Cambridge University Press, 2015 edition.

Reference Books:

1. Engineering Chemistry of Wiley India Pvt. Ltd., Vairam and others, 2014 edition (second).

2.Engineering Chemistry by Prasanth Rath, Cengage Learning, 2015 edition.

3.A text book of engineering Chemistry by S. S. Dara; S. Chand & Co Ltd., Latest Edition

4.Applied Chemistry by H.D. Gesser, Springer Publishers

5. Text book of Nano-science and nanotechnology by B.S. Murthy, P. Shankar and others, University Press, IIM

I Year - II Semester	L	Т	Р	С
1 Tear - II Semester	4	0	0	3

ELECTRICAL & MECHANICAL TECHNOLOGY

ELECTRICAL TECHNOLOGY:

Preamble:

This course covers the topics related to analysis of various electrical circuits, operation of various electrical machines, various electronic components to perform well in their respective fields.

Learning Objectives:

- To learn the basic principles of electrical law's and analysis of networks.
- To understand the principle of operation and construction details of DC machines.
- To understand the principle of operation and construction details of transformer.
- To understand the principle of operation and construction details of alternator and 3-Phase induction motor.
- To Understand the principles and construction of various measuring instruments.

Unit - I

DC Machines:

Principle of operation of DC generator – emf equation – types of DC machine – torque equation of DC motor – applications – three point starter, speed control methods – OCC of DC generator

Transformers: Principle of operation of single phase transformers – e.m.f equation – losses –efficiency and regulation.

Unit - II

AC Rotating Machines:

Principle of operation of alternators – regulation by synchronous impedance method –principle of operation of 3-Phase induction motor – slip-torque characteristics - efficiency – applications.

Unit III

Measuring Instruments:

Classification – Deflection, controlling, damping torque, ammeter, voltmeter, wattmeter, MI, MC instruments – Energy meter – Construction of CRO.

Learning Outcomes:

- Able to analyse the various electrical networks.
- Able to understand the operation of DC generator, DC Motor ,3-point starter and Speed control methods.
- Able to analyse the performance of transformer.
- Able to explain the operation of 3-phase alternator and 3-phase induction motors.
- Able to explain the working principle of various measuring instruments.

MECHANICAL TECNOLOGY

Learning Objectives: The content of this course shall provide the student the basic concepts of various mechanical systems and exposes the student to a wide range of equipment and their utility in a practical situation. It shall provide the fundamental principles of fuels, I.C. Engines, transmission systems, heat transfer fundamentals and various manufacturing operations usually exist in any process plant.

UNIT-IV:

Energy Sources: Renewable and non renewable energy resources, renewable energy forms and conversions. Thermodynamic principles and laws.

Internal combustion engines: classification – working principle - engine components. Four stroke and two stroke petrol and diesel engines, comparisons. Performance parameters: IP, BP, FP, SFC, BTE, ITE, ME.

UNIT-V:

Heat Transfer: Modes of heat transfer- heat transfer parameters, various thermo physical properties. Conduction - heat transfer for extended surfaces, Types of fins, Fin equation for rectangular fin, Fin efficiency, Fin effectiveness. Convection – Mechanism, Natural and Forced Convection. Heat Transfer in laminar and turbulent flow over a flat plate. Radiation heat transfer: Thermal radiation, Blackbody radiation, Radiation intensity, Radiative properties, Basic laws of radiation.

UNIT-VI:

Transmission of power and manufacturing methods:

Belt, rope and chain drives- Different types - power transmission by belts and ropes, initial tensions in the belt.

Gears: classification of gears, applications.

Metal joining: arc welding, resistance welding, gas welding, brazing and soldering Metal forming: forging – operations, rolling and extrusion principles Machine tool: lathe classification, specifications, and operations.

Outcomes:

After completing the course, the student shall be able to understand:

- Working of I.C. Engines
- Modes of Heat transfer
- Power transmission by drives and different manufacturing methods.

Text Books:

- 1. Electrical Technology by Surinder Pal Bali, Pearson Publications.
- 2. Electrical Circuit Theory and Technology by John Bird, Routledge Taylor & Francis Group
- 3. Mechanical Engineering Science K R Gopala Krishna, Subhas publications

4. Elements of Mechanical Engineering, M.L. Mathur, F.S.Metha & R.P.Tiwari Jain Brothers Publs., 2009.

5. Heat transfer by P.K. Nag, Tata McGraw-Hill

Reference Books:

- 1. Basic Electrical Engineering by M.S.Naidu and S.Kamakshiah, TMH Publications
- 2. Fundamentals of Electrical Engineering by Rajendra Prasad, PHI Publications, 2nd edition
- 3. Basic Electrical Engineering by Nagsarkar, Sukhija, Oxford Publications, 2nd edition
- 4. Electrical Engineering Prasad, Sivanagaraju, Cengage Learning
- 5. Theory of machines by Rattan McGraw-Hill publications
- 6. Production Technology by P.N.Rao by I & II McGraw-Hill publications

I Year - II Semester	L	Т	Р	С
1 Tear - II Semester	4	0	0	3

ENVIRONMENTAL STUDIES

Course Learning Objectives:

The objectives of the course is to impart

- Overall understanding of the natural resources
- Basic understanding of the ecosystem and its diversity
- Acquaintance on various environmental challenges induced due to unplanned anthropogenic activities
- An understanding of the environmental impact of developmental activities
- Awareness on the social issues, environmental legislation and global treaties

Course Outcomes:

The student should have knowledge on

- The natural resources and their importance for the sustenance of the life and recognize the need to conserve the natural resources
- The concepts of the ecosystem and its function in the environment. The need for protecting the producers and consumers in various ecosystems and their role in the food web
- The biodiversity of India and the threats to biodiversity, and conservation practices to protect the biodiversity
- Various attributes of the pollution and their impacts and measures to reduce or control the pollution along with waste management practices
- Social issues both rural and urban environment and the possible means to combat the challenges
- The environmental legislations of India and the first global initiatives towards sustainable development.
- About environmental assessment and the stages involved in EIA and the environmental audit.
- Self Sustaining Green Campus with Environment Friendly aspect of Energy, Water and Wastewater reuse Plantation, Rain water Harvesting, Parking Curriculum.

Syllabus:

UNIT – I Multidisciplinary nature of Environmental Studies: Definition, Scope and Importance –Sustainability: Stockholm and Rio Summit–Global Environmental Challenges: Global warming and climate change, Carbon Credits, acid rains, ozone layer depletion, population growth and explosion, effects. Role of information Technology in Environment and human health.

Ecosystems: Concept of an ecosystem. - Structure and function of an ecosystem. - Producers, consumers and decomposers. - Energy flow in the ecosystem - Ecological succession. - Food chains, food webs and ecological pyramids. - Introduction, types, characteristic features, structure and function of Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems.

UNIT - II Natural Resources: Natural resources and associated problems

Forest resources – Use and over – exploitation, deforestation – Timber extraction – Mining, dams and other effects on forest and tribal people

Water resources – Use and over utilization of surface and ground water – Floods, drought, conflicts over water, dams – benefits and problems

Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources, Sustainable mining of Granite, Literate, Coal, Sea and River sands.

Food resources: World food problems, changes caused by non-agriculture activities-effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity

Energy resources: Growing energy needs, renewable and non-renewable energy sources use of alternate energy sources Vs Oil and Natural Gas Extraction.

Land resources: Land as a resource, land degradation, Wasteland reclamation, man induced landslides, soil erosion and desertification. Role of an individual in conservation of natural resources. Equitable use of resources for sustainable lifestyles.

UNIT – III Biodiversity and its conservation: Definition: genetic, species and ecosystem diversity- classification - Value of biodiversity: consumptive use, productive use, social-Biodiversity at national and local levels. India as a mega-diversity nation - Hot-spots of biodiversity - Threats to biodiversity: habitat loss, man-wildlife conflicts - Endangered and endemic species of India – Conservation of biodiversity: conservation of biodiversity.

UNIT – IV Environmental Pollution: Definition, Cause, effects and control measures of Air pollution, Water pollution, Soil pollution, Noise pollution, Nuclear hazards. Role of an individual in prevention of pollution. - Pollution case studies, Sustainable Life Studies.

Solid Waste Management: Sources, Classification, effects and control measures of urban and industrial solid wastes. Consumerism and waste products, Biomedical, Hazardous and e – waste management.

UNIT – V Social Issues and the Environment: Urban problems related to energy -Water conservation, rain water harvesting-Resettlement and rehabilitation of people; its problems and concerns. Environmental ethics: Issues and possible solutions. Environmental Protection Act -Air (Prevention and Control of Pollution) Act. –Water (Prevention and control of Pollution) Act -Wildlife Protection Act -Forest Conservation Act-Issues involved in enforcement of environmental legislation. -Public awareness.

UNIT – VI Environmental Management: Impact Assessment and its significance various stages of EIA, preparation of EMP and EIS, Environmental audit. Ecotourism, Green Campus – Green business and Green politics.

The student should Visit an Industry/Ecosystem and submit a report individually on any issues related to Environmental Studies course and make a power point presentation.

Text Books:

- 1. Environmental Studies, K.V. S. G. Murali Krishna, VGS Publishers, Vijayawada
- 2. Environmental Studies, R. Rajagopalan, 2nd Edition, 2011, Oxford University Press.
- 3. Environmental Studies, P.N. Palanisamy, P. Manikandan, A. Geetha, and K. Manjula Rani; Pearson Education, Chennai

Reference:

- 1. Text Book of Environmental Studies, Deeshita Dave & P. Udaya Bhaskar, Cengage Learning.
- 2. A Textbook of Environmental Studies, Shaashi Chawla, TMH, New Delhi
- 3. Environmental Studies, Benny Joseph, Tata McGraw Hill Co, New Delhi
- 4. "Perspectives in Environment Studies" Anubha Kaushik, C P Kaushik, New Age International Publishers, 2014

I Year - II Semester	L	Т	Р	С
T Tear - II Semester	4	0	0	3

DATA STRUCTURES

OBJECTIVES:

- To be familiar with basic techniques handling problems with Data structures
- Solve problems using data structures such as linear lists, stacks, queues, hash tables

UNIT-I: ARRAYS

Abstract Data Type, The Array as an Abstract Data Type, The Polynomial Abstract Data type-Polynomial Representation- Polynomial Addition. Spares Matrices, Introduction- Sparse Matrix Representation- Transposing a Matrix- Matrix Multiplication, Representation of Arrays.

UNIT-II: STACKS AND QUEUES

The Stack Abstract Data Type, The Queue Abstract Data Type, Evaluation of Expressions, Expression- Postfix Notation- Infix to Postfix.

UNIT-III: LINKED LISTS

Single Linked List and Chains, Circular Lists, Available Space Lists, Linked Stacks and Queues, Polynomials, Polynomial Representation- Adding Polynomials- Circular List Representation of Polynomials, Equivalence Classes, Sparse Matrices, Sparse Matrix Representation- Sparse Matrix Input- Deleting a Sparse Matrix, Doubly Linked Lists, Generalized Lists, Representation of Generalized Lists- Recursive Algorithms for Lists- Reference Counts, Shared and Recursive Lists

UNIT-IV: TREES

Representation of Trees, Binary Trees, The Abstract Data Type, Properties of Binary Tress, Binary Tree Representations, Binary Tree Traversal, Introduction, Inorder Traversal Preorder Traversal, Postorder Traversal, Thread Binary Trees, Threads, Inorder Traversal of a Threaded Binary Tree, Inserting a Node into a Threaded Binary Tree, Heaps, Priority Queues, Definition of a Max Heap, Insertion into a Max Heap, Deletion from a Max Heap, Binary Search Trees, Definition, Searching a Binary Search Tree, Insertion into a Binary Search Tree, Height of Binary Search Tree.

UNIT-V: GRAPHS

The Graph Abstract Data Type, Introduction, Definition, Graph Representation, Elementary Graph Operation, Depth First Search, Breadth First Search, Connected Components, Spanning Trees, Biconnected Components, Minimum Cost Spanning Trees, Kruskal S Algorithm, Prim s Algorithm, Sollin's Algorithm, Shortest Paths and Transitive Closure, Single Source/All Destination: Nonnegative Edge Cost, Single Source/All Destination: General Weights, All-Pairs Shortest Path, Transitive Closure.

UNIT-VI: SORTING

Insertion Sort, Quick Sort, Merge Sort Merging, Iterative Merge Sort, Recursive Merge Sort, Heap Sort, Summary of Internal Sorting

OUTCOMES:

- Apply advanced data structure strategies for exploring complex data structures.
- Compare and contrast various data structures and design techniques in the area Of Performance.
- Implement all data structures like stacks, queues, trees, lists and graphs and compare their Performance and trade offs

Text Books:

- 1. Data structures, Algorithms and Applications in C++, S.Sahni, University Press (India) Pvt.Ltd, 2nd edition, Universities Press Orient Longman Pvt. Ltd.
- 2. Data structures and Algorithm Analysis in C++, Mark Allen Weiss, Pearson Education. Ltd., Second Edition.
- 3. Data structures and algorithms in C++, 3rd Edition, Adam Drozdek, Thomson

Reference Books:

- 1. Data structures and Algorithm Analysis in C++, Mark Allen Weiss, Pearson Education. Ltd., Second Edition.
- 2. Data structures using C and C++, Langsam, Augenstein and Tanenbaum, PHI.
- 3. Problem solving with C++, The OOP, Fourth edition, W.Savitch, Pearson education.

I Year - II Semester	L	Т	Р	С		
	0	0	3	2		
APPLIED/ENGINEERING CHEMISTRY LABORATORY						

- 1. Introduction to Chemistry laboratory Molarity, Normality, Primary, secondary standard solutions, Volumetric titrations, Quantitative analysis, Qualitative analysis, etc.
- 2. Trial experiment Determination of HCl using standard Na₂CO₃ solution.
- 3. Determination of alkalinity of a sample containing Na₂CO₃ and NaOH.
- 4. Determination of KMnO₄ using standard Oxalic acid solution.
- 5. Determination of Ferrous iron using standard $K_2Cr_2O_7$ solution.
- 6. Determination of Copper using standard K₂Cr₂O₇ solution.
- 7. Determination of temporary and permanent hardness of water using standard EDTA solution.
- 8. Determination of Copper using standard EDTA solution.
- 9. Determination of Iron by a Colorimetric method using thiocynate as reagent.
- 10. Determination of pH of the given sample solution using pH meter.
- 11. Conductometric titration between strong acid and strong base.
- 12. Conductometric titration between strong acid and weak base.
- 13. Potentiometric titration between strong acid and strong base.
- 14. Potentiometric titration between strong acid and weak base.
- 15. Determination of Zinc using standard EDTA solution.
- 16. Determination of Vitamin C.

Outcomes: The students entering into the professional course have practically very little exposure to lab classes. The experiments introduce volumetric analysis; redox titrations with different indicators; EDTA titrations; then they are exposed to a few instrumental methods of chemical analysis. Thus at the end of the lab course, the student is exposed to different methods of chemical analysis and use of some commonly employed instruments. They thus acquire some experimental skills.

Reference Books

- 1. A Textbook of Quantitative Analysis, Arthur J. Vogel.
- Dr. Jyotsna Cherukuris (2012) Laboratory Manual of engineering chemistry-II, VGS Techno Series
 Chemistry Practical Manual, Lorven Publications K. Mukkanti (2009) Practical Engineering Chemistry, B.S. Publication.

I Year - II Semester		L	Т	Р	С	
		0	0	3	2	
ENGLISH - COMMUNICATION SKILLS LAB - 2						

PRESCRIBED LAB MANUAL FOR SEMESTER II:

'INTERACT: English Lab Manual for Undergraduate Students' Published by Orient Blackswan Pvt Ltd.

OBJECTIVES:

To enable the students to learn demonstratively the communication skills of listening, speaking, reading and writing.

OUTCOME:

A study of the communicative items in the laboratory will help the students become successful in the competitive world.

The course content along with the study material is divided into six units.

UNIT 1:

1. Debating - Practice work

UNIT 2:

1. Group Discussions -- Practice work

UNIT 3:

1. Presentation Skills - Practice work

UNIT 4:

1. Interview Skills - Practice work

UNIT 5:

1. Email, Curriculum Vitae - Practice work

UNIT 6:

- 1. Idiomatic Expressions
- 2. Common Errors in English Practice work

Reference Books:

- 1. Strengthen your communication skills by Dr M Hari Prasad, Dr Salivendra Raju and Dr G Suvarna Lakshmi, Maruti Publications.
- 2. English for Professionals by Prof Eliah, B.S Publications, Hyderabad.
- 3. Unlock, Listening and speaking skills 2, Cambridge University Press
- 4. Spring Board to Success, Orient BlackSwan
- 5. A Practical Course in effective english speaking skills, PHI
- 6. Word power made handy, Dr shalini verma, Schand Company
- 7. Let us hear them speak, Jayashree Mohanraj, Sage texts
- 8. Professional Communication, Aruna Koneru, Mc Grawhill Education
- 9. Cornerstone, Developing soft skills, Pearson Education

I Year - II Semester	L	Т	Р	С
1 Tear - II Semester	0	0	3	2

COMPUTER PROGRAMMING LAB

OBJECTIVES:

- Understand the basic concept of C Programming, and its different modules that includes conditional and looping expressions, Arrays, Strings, Functions, Pointers, Structures and File programming.
- Acquire knowledge about the basic concept of writing a program.
- Role of constants, variables, identifiers, operators, type conversion and other building blocks of C Language.
- Use of conditional expressions and looping statements to solve problems associated with conditions and repetitions.
- Role of Functions involving the idea of modularity.

Programming

Exercise - 1 Basics

- a) What is an OS Command, Familiarization of Editors vi, Emacs
- b) Using commands like mkdir, ls, cp, mv, cat, pwd, and man
- c) C Program to Perform Adding, Subtraction, Multiplication and Division of two numbers From Command line

Exercise - 2 Basic Math

- a) Write a C Program to Simulate 3 Laws at Motion
- b) Write a C Program to convert Celsius to Fahrenheit and vice versa

Exercise - 3 Control Flow - I

a)Write a C Program to Find Whether the Given Year is a Leap Year or not.b)Write a C Program to Add Digits & Multiplication of a number

Exercise – 4 Control Flow - II

- a)Write a C Program to Find Whether the Given Number is
 - i) Prime Number
 - ii) Armstrong Number
- b) Write a C program to print Floyd Triangle
- c) Write a C Program to print Pascal Triangle

Exercise – 5 Functions

a) Write a C Program demonstrating of parameter passing in Functions and returning values.

b) Write a C Program illustrating Fibonacci, Factorial with Recursion without Recursion

Exercise – 6 Control Flow - III

a) Write a C Program to make a simple Calculator to Add, Subtract, Multiply or Divide Using switch...caseb) Write a C Program to convert decimal to binary and hex (using switch call function the function)

Exercise – 7 Functions - Continued

Write a C Program to compute the values of sin x and $\cos x$ and e^x values using Series expansion. (use factorial function)

Exercise – 8 Arrays

Demonstration of arrays

- a) Search-Linear.
- b) Sorting-Bubble, Selection.
- c) Operations on Matrix.

Exercises - 9 Structures

a)Write a C Program to Store Information of a Movie Using Structure

- b)Write a C Program to Store Information Using Structures with Dynamically Memory Allocation
- c) Write a C Program to Add Two Complex Numbers by Passing Structure to a Function

Exercise - 10 Arrays and Pointers

a)Write a C Program to Access Elements of an Array Using Pointer

b) Write a C Program to find the sum of numbers with arrays and pointers.

Exercise – 11 Dynamic Memory Allocations

- a) Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using malloc () function.
- b) Write a C program to find sum of n elements entered by user. To perform this program, allocate memory dynamically using calloc () function.

Understand the difference between the above two programs

Exercise – 12 Strings

a) Implementation of string manipulation operations with library function.

- i) copy
- ii) concatenate
- iii) length
- iv) compare

b) Implementation of string manipulation operations without library function.

- i) copy
- ii) concatenate
- iii) length
- iv) compare

Exercise -13 Files

a)Write a C programming code to open a file and to print it contents on screen. b)Write a C program to copy files

Exercise - 14 Files Continued

a) Write a C program merges two files and stores their contents in another file.b)Write a C program to delete a file.

OUTCOMES:

- Apply and practice logical ability to solve the problems.
- Understand C programming development environment, compiling, debugging, and linking and executing a program using the development environment
- Analyzing the complexity of problems, Modularize the problems into small modules and then convert them into programs
- Understand and apply the in-built functions and customized functions for solving the problems.
- Understand and apply the pointers, memory allocation techniques and use of files for dealing with variety of problems.
- Document and present the algorithms, flowcharts and programs in form of user-manuals

•Identification of various computer components, Installation of software

Note:

- a) All the Programs must be executed in the Linux Environment. (Mandatory)
- b) The Lab record must be a print of the LATEX (.tex) Format.

II Year - I Semester	L	Т	Р	С
	4	0	0	3

ELECTRONIC DEVICES AND CIRCUITS

Objectives:

The main objectives of this course are:

- The basic concepts of semiconductor physics are to be reviewed.
- Study the physical phenomena such as conduction, transport mechanism and electrical characteristics of different diodes.
- The application of diodes as rectifiers with their operation and characteristics with and without filters are discussed.
- The principal of working and operation of Bipolar Junction Transistor and Field Effect Transistor and their characteristics are explained.
- The need of transistor biasing and its significance is explained. The quiescent point or operating point is explained.
- Small signal equivalent circuit analysis of BJT and FET transistor amplifiers in different configuration is explained.

Syllabus:

UNIT-I:Semi Conductor Physics : Insulators, Semi conductors, and Metals classification using energy band diagrams, mobility and conductivity, electrons and holes in intrinsic semi conductors, extrinsic semi conductors, drift and diffusion, charge densities in semiconductors, Hall effect, continuity equation, law of junction, Fermi Dirac function, Fermi level in intrinsic and extrinsic Semiconductors

UNIT- II: Junction Diode Characteristics : Open circuited p-n junction, Biased p-n junction, p-n junction diode, current components in PN junction Diode, diode equation, V-I Characteristics, temperature dependence on V-I characteristics, Diode resistance, Diode capacitance, energy band diagram of PN junction Diode.

Special Semiconductor Diodes: Zener Diode, Breakdown mechanisms, Zener diode applications, LED, Photo diode, Tunnel Diode, SCR, UJT. Construction, operation and characteristics of all the diodes are required to be considered.

UNIT- III: Rectifiers and Filters: Basic Rectifier setup, half wave rectifier, full wave rectifier, bridge rectifier, derivations of characteristics of rectifiers, rectifier circuits-operation, input and output waveforms, Filters, Inductor filter, Capacitor filter, comparison of various filter circuits in terms of ripple factors.

UNIT- IV: Transistor Characteristics:

BJT: Junction transistor, transistor current components, transistor equation, transistor configurations, transistor as an amplifier, characteristics of transistor in Common Base, Common Emitter and Common Collector configurations, Ebers-Moll model of a transistor, punch through/ reach through, Photo transistor, typical transistor junction voltage values.

FET: FET types, construction, operation, characteristics, parameters, MOSFET-types, construction, operation, characteristics, comparison between JFET and MOSFET.

UNIT- V: Transistor Biasing and Thermal Stabilization : Need for biasing, operating point, load line analysis, BJT biasing- methods, basic stability, fixed bias, collector to base bias, self bias, Stabilization against variations in V_{BE} , Ic, and β , Stability factors, (S, S['], S^{''}), Bias compensation, Thermal runaway, Thermal stability.

FET Biasing- methods and stabilization.

UNIT- VI: Small Signal Low Frequency Transistor Amplifier Models:

BJT: Two port network, Transistor hybrid model, determination of h-parameters, conversion of h-parameters, generalized analysis of transistor amplifier model using h-parameters, Analysis of CB, CE and CC amplifiers using exact and approximate analysis, Comparison of transistor amplifiers.

FET: Generalized analysis of small signal model, Analysis of CG, CS and CD amplifiers, comparison of FET amplifiers.

Text Books:

- 1. Electronic Devices and Circuits- J. Millman, C. Halkias, Tata Mc-Graw Hill, Second Edition.
- 2. Integrated Electronics- Jacob Millman, C. Halkies, C.D.Parikh, Tata Mc-Graw Hill, 2009.

References:

- 1. Electronic Devices and Circuits-K. Satya Prasad, VGS Book Links.
- 2. Electronic Devices and Circuits-Salivahanan, Kumar, Vallavaraj, Tata Mc-Graw Hill, Second Edition
- 3. Electronic Devices and Circuits Bell, Oxford

Outcomes:

At the end of this course the student can able to:

- Understand the basic concepts of semiconductor physics.
- Understand the formation of p-n junction and how it can be used as a p-n junction as diode in different modes of operation.
- Know the construction, working principle of rectifiers with and without filters with relevant expressions and necessary comparisons.
- Understand the construction, principle of operation of transistors, BJT and FET with their V-I characteristics in different configurations.
- Know the need of transistor biasing, various biasing techniques for BJT and FET and stabilization concepts with necessary expressions.
- Perform the analysis of small signal low frequency transistor amplifier circuits using BJT and FET in different configurations.

H V I C		L	Т	Р	С	
II Year - I Semester		4	0	0	3	

SWITCHING THEORY AND LOGIC DESIGN

UNIT - I: REVIEW OF NUMBER SYSTEMS & CODES:

- i) Representation of numbers of different radix, conversation from one radix to another radix, r-1's compliments and r's compliments of signed members, problem solving.
- ii) 4 bit codes, BCD, Excess-3, 2421, 84-2-1 9's compliment code etc.,
- iii) Logic operations and error detection & correction codes; Basic logic operations -NOT, OR, AND, Universal building blocks, EX-OR, EX-NOR - Gates, Standard SOP and POS, Forms, Gray code, error detection, error correction codes (parity checking, even parity, odd parity, Hamming code) NAND-NAND and NOR-NOR realizations.

UNIT – II: MINIMIZATION TECHNIQUES

Boolean theorems, principle of complementation & duality, De-morgan theorems, minimization of logic functions using Boolean theorems, minimization of switching functions using K-Map up to 6 variables, tabular minimization, problem solving (code-converters using K-Map etc..).

UNIT – III: COMBINATIONAL LOGIC CIRCUITS DESIGN

Design of Half adder, full adder, half subtractor, full subtractor, applications of full adders, 4-bit binary subtractor, adder-subtractor circuit, BCD adder circuit, Excess 3 adder circuit, look-a-head adder circuit, Design of decoder, demultiplexer, 7 segment decoder, higher order demultiplexing, encoder, multiplexer, higher order multiplexing, realization of Boolean functions using decoders and multiplexers, priority encoder, 4-bit digital comparator.

UNIT - IV: INTRODUCTION OF PLD's

PROM, PAL, PLA-Basics structures, realization of Boolean function with PLDs, programming tables of PLDs, merits & demerits of PROM, PAL, PLA comparison, realization of Boolean functions using PROM, PAL, PLA, programming tables of PROM, PAL, PLA.

UNIT - V: SEQUENTIAL CIRCUITS I

Classification of sequential circuits (synchronous and asynchronous); basic flip-flops, truth tables and excitation tables (nand RS latch, nor RS latch, RS flip-flop, JK flip-flop, T flip-flop, D flip-flop with reset and clear terminals). Conversion from one flip-flop to flip-flop. Design of ripple counters, design of synchronous counters, Johnson counter, ring counter. Design of registers - Buffer register, control buffer register, shift register, bi-directional shift register, universal shift register.

UNIT – VI: SEQUENTIAL CIRCUITS II

Finite state machine; Analysis of clocked sequential circuits, state diagrams, state tables, reduction of state tables and state assignment, design procedures. Realization of circuits using various flip-flops. Meelay to Moore conversion and vice-versa.

TEXT BOOKS:

- 1. Switching Theory and Logic Design by Hill and Peterson Mc-Graw Hill TMH edition.
- 2. Switching Theory and Logic Design by A. Anand Kumar
- 3. Digital Design by Mano PHI.

REFERENCE BOOKS:

- 1. Modern Digital Electronics by RP Jain, TMH
- 2. Fundamentals of Logic Design by Charles H. Roth Jr, Jaico Publishers
- 3. Micro electronics by Milliman MH edition.

II Year - I Semester	L	Т	Р	С	
	4	0	0	3	
	SIGNALS & SYSTEMS				

OBJECTIVES:

The main objectives of this course are given below:

- To introduce the terminology of signals and systems.
- To introduce Fourier tools through the analogy between vectors and signals.
- To introduce the concept of sampling and reconstruction of signals.
- To analyze the linear systems in time and frequency domains.
- To study z-transform as mathematical tool to analyze discrete-time signals and systems.

UNIT- I: INTRODUCTION: Definition of Signals and Systems, Classification of Signals, Classification of Systems, Operations on signals: time-shifting, time-scaling, amplitude-shifting, amplitude-scaling. Problems on classification and characteristics of Signals and Systems. Complex exponential and sinusoidal signals, Singularity functions and related functions: impulse function, step function signum function and ramp function. Analogy between vectors and signals, orthogonal signal space, Signal approximation using orthogonal functions, Mean square error, closed or complete set of orthogonal functions, Orthogonality in complex functions.

UNIT -- II: FOURIER SERIES AND FOURIER TRANSFORM:

Fourier series representation of continuous time periodic signals, properties of Fourier series, Dirichlet's conditions, Trigonometric Fourier series and Exponential Fourier series, Complex Fourier spectrum. Deriving Fourier transform from Fourier series, Fourier transform of arbitrary signal, Fourier transform of standard signals, Fourier transform of periodic signals, properties of Fourier transforms, Fourier transforms involving impulse function and Signum function. Introduction to Hilbert Transform.

UNIT –III: SAMPLING THEOREM – Graphical and analytical proof for Band Limited Signals, impulse sampling, Natural and Flat top Sampling, Reconstruction of signal from its samples, effect of under sampling – Aliasing, Introduction to Band Pass sampling.

UNIT-IV: ANALYSIS OF LINEAR SYSTEMS: Linear system, impulse response, Response of a linear system, Linear time invariant (LTI) system, Linear time variant (LTV) system, Concept of convolution in time domain and frequency domain, Graphical representation of convolution, Transfer function of a LTI system. Filter characteristics of linear systems. Distortion less transmission through a system, Signal bandwidth, system bandwidth, Ideal LPF, HPF and BPF characteristics, Causality and Poly-Wiener criterion for physical realization, relationship between bandwidth and rise time.

Cross-correlation and auto-correlation of functions, properties of correlation function, Energy density spectrum, Parseval's theorem, Power density spectrum, Relation between auto correlation function and energy/power spectral density function. Relation between convolution and correlation, Detection of periodic signals in the presence of noise by correlation, Extraction of signal from noise by filtering.

UNIT -V: LAPLACE TRANSFORMS : Review of Laplace transforms, Partial fraction expansion, Inverse Laplace transform, Concept of region of convergence (ROC) for Laplace transforms, constraints on ROC for various classes of signals, Properties of L.T's, Relation between L.T's, and F.T. of a signal. Laplace transform of certain signals using waveform synthesis.

UNIT -VI: Z-TRANSFORMS : Fundamental difference between continuous-time and discrete-time signals, discrete time signal representation using complex exponential and sinusoidal components, Periodicity of discrete time using complex exponential signal, Concept of Z- Transform of a discrete sequence. Distinction between Laplace, Fourier and Z transforms. Region of convergence in

Z-Transform, constraints on ROC for various classes of signals, Inverse Z-transform, properties of Z-transforms.

TEXT BOOKS:

- 1. Signals, Systems & Communications B.P. Lathi, BS Publications, 2003.
- 2. Signals and Systems A.V. Oppenheim, A.S. Willsky and S.H. Nawab, PHI, 2nd Edn.
- 3. Signals & Systems- Narayan Iyer and K Satya Prasad, Cenage Pub.

REFERENCE BOOKS:

- 1. Signals & Systems Simon Haykin and Van Veen, Wiley, 2nd Edition.
- 2. Principles of Linear Systems and Signals BP Lathi, Oxford University Press, 2015
- 3. Signals and Systems K Raja Rajeswari, B VisweswaraRao, PHI, 2009
- 4. Fundamentals of Signals and Systems- Michel J. Robert, MGH International Edition, 2008.
- 5. Signals and Systems T K Rawat, Oxford University press, 2011

OUTCOMES:

At the end of this course the student will able to:

- Characterize the signals and systems and principles of vector spaces, Concept of orthgonality.
- Analyze the continuous-time signals and continuous-time systems using Fourier series, Fourier transform and Laplace transform.
- Apply sampling theorem to convert continuous-time signals to discrete-time signal and reconstruct back.
- Understand the relationships among the various representations of LTI systems
- Understand the Concepts of convolution, correlation, Energy and Power density spectrum and their relationships.
- Apply z-transform to analyze discrete-time signals and systems.

II Year - I Semester		L	Т	Р	С
		4	0	0	3
NETWORK A	NALYSIS				

UNIT – I

Introduction to Electrical Circuits : Network elements classification, Electric charge and current, Electric energy and potential, Resistance parameter – series and parallel combination, Inductance parameter – series and parallel combination. Energy sources: Ideal, Non-ideal, Independent and dependent sources, Source transformation, Kirchoff's laws, Mesh analysis and Nodal analysis problem solving with resistances only including dependent sources also. (Text Books: 1,2,3, Reference Books: 3)

A.C Fundamentals and Network Topology: Definitions of terms associated with periodic functions: Time period, Angular velocity and frequency, RMS value, Average value, Form factor and peak factor- problem solving, Phase angle, Phasor representation, Addition and subtraction of phasors, mathematical representation of sinusoidal quantities, explanation with relevant theory, problem solving. Principal of Duality with examples.

Network Topology: Definitions of branch, node, tree, planar, non-planar graph, incidence matrix, basic tie set schedule, basic cut set schedule. (Text Books: 2,3, Reference Books: 3)

UNIT – II

Steady State Analysis of A.C Circuits : Response to sinusoidal excitation - pure resistance, pure inductance, pure capacitance, impedance concept, phase angle, series R-L, R-C, R-L-C circuits problem solving. Complex impedance and phasor notation for R-L, R-C, R-L-C problem solving using mesh and nodal analysis, Star-Delta conversion, problem solving. (Text Books: 1,2, Reference Books: 3)

UNIT – III

Coupled Circuits : Coupled Circuits: Self inductance, Mutual inductance, Coefficient of coupling, analysis of coupled circuits, Natural current, Dot rule of coupled circuits, Conductively coupled equivalent circuits- problem solving.

Resonance: Introduction, Definition of Q, Series resonance, Bandwidth of series resonance, Parallel resonance, Condition for maximum impedance, current in anti resonance, Bandwidth of parallel resonance, general case-resistance present in both branches, anti resonance at all frequencies. (Text Books:2,3, Reference Books: 3)

UNIT – IV

Network Theorems: Thevinin's, Norton's, Milliman's, Reciprocity, Compensation, Substitution, Superposition, Max Power Transfer, Tellegens- problem solving using dependent sources also. (Text Books: 1,2,3, Reference Books: 2)

UNIT – V

Two-port networks : Relationship of two port networks, Z-parameters, Y-parameters, Transmission line parameters, h-parameters, Inverse h-parameters, Inverse Transmission line parameters, Relationship between parameter sets, Parallel connection of two port networks, Cascading of two port networks, series connection of two port networks, problem solving including dependent sources also. (Text Books: 1,2, Reference Books: 1,3)

UNIT – VI

Transients : First order differential equations, Definition of time constants, R-L circuit, R-C circuit with DC excitation, Evaluating initial conditions procedure, second order differential equations, homogeneous, non-homogeneous, problem solving using R-L-C elements with DC excitation and AC excitation, Response as related to s-plane rotation of roots. Solutions using Laplace transform method. (Text Books: 1,2,3, Reference Books: 1,3)

TEXT BOOKS:

- 1. Network Analysis ME Van Valkenburg, Prentice Hall of India, 3rd Edition, 2000.
- 2. Network Analysis by K.Satya Prasad and S Sivanagaraju, Cengage Learning
- 3. Electric Circuit Analysis by Hayt and Kimmarle, TMH

REFERENCES:

- 1. Network lines and Fields by John. D. Ryder 2nd edition, Asia publishing house.
- 2. Basic Circuit Analysis by DR Cunninghan, Jaico Publishers.
- 3. Network Analysis and Filter Design by Chadha, Umesh Publications.

COURSE OBJECTIVES:

- 1. To understand the basic concepts on RLC circuits.
- 2. To know the behavior of the steady states and transients states in RLC circuits.
- 3. To know the basic Laplace transforms techniques in periods' waveforms.
- 4. To understand the two port network parameters.
- 5. To understand the properties of LC networks and filters.

COUSE OUTCOME:

- 1. gain the knowledge on basic network elements.
- 2. will analyze the RLC circuits behavior in detailed.
- 3. analyze the performance of periodic waveforms.
- 4. gain the knowledge in characteristics of two port network parameters (Z, Y, ABCD, h & g).
- 5. analyze the filter design concepts in real world applications.

II Year - I Semester	L	Т	Р	С
	4	0	0	3

RANDOM VARIABLES & STOCHASTIC PROCESSES

OBJECTIVES:

- To give students an introduction to elementary probability theory, in preparation for courses on statistical analysis, random variables and stochastic processes.
- To mathematically model the random phenomena with the help of probability theory concepts.
- To introduce the important concepts of random variables and stochastic processes.
- To analyze the LTI systems with stationary random process as input.
- To introduce the types of noise and modelling noise sources.

UNIT I

THE RANDOM VARIABLE : Introduction, Review of Probability Theory, Definition of a Random Variable, Conditions for a Function to be a Random Variable, Discrete, Continuous and Mixed Random Variables, Distribution and Density functions, Properties, Binomial, Poisson, Uniform, Gaussian, Exponential, Rayleigh, Conditional Distribution, Conditional Density, Properties.

UNIT II

OPERATION ON ONE RANDOM VARIABLE – EXPECTATIONS : Introduction, Expected Value of a Random Variable, Function of a Random Variable, Moments about the Origin, Central Moments, Variance and Skew, Chebychev's Inequality, Characteristic Function, Moment Generating Function, Transformations of a Random Variable: Monotonic Transformations for a Continuous Random Variable, Nonmonotonic Transformations of Continuous Random Variable.

UNIT III

MULTIPLE RANDOM VARIABLES: Vector Random Variables, Joint Distribution Function, Properties of Joint Distribution, Marginal Distribution Functions, Conditional Distribution and Density, Statistical Independence, Sum of Two Random Variables, Sum of Several Random Variables, Central Limit Theorem: Unequal Distribution, Equal Distributions.

OPERATIONS ON MULTIPLE RANDOM VARIABLES: Joint Moments about the Origin, Joint Central Moments, Joint Characteristic Functions, Jointly Gaussian Random Variables: Two Random Variables case, N Random Variables case, Properties, Transformations of Multiple Random Variables, Linear Transformations of Gaussian Random Variables.

UNIT IV

RANDOM PROCESSES – TEMPORAL CHARACTERISTICS: The Random Process Concept, Classification of Processes, Deterministic and Nondeterministic Processes, Distribution and Density Functions, Concept of Stationarity and Statistical Independence. First-Order Stationary Processes, Second-order and Wide-Sense Stationarity, Nth-order and Strict-Sense Stationarity, Time Averages and Ergodicity, Autocorrelation Function and its Properties, Cross-Correlation Function and its Properties, Covariance Functions, Gaussian Random Processes, Poisson Random Process.

UNIT V

RANDOM PROCESSES – SPECTRAL CHARACTERISTICS: The Power Density Spectrum: Properties, Relationship between Power Density Spectrum and Autocorrelation Function, The Cross-Power Density Spectrum, Properties, Relationship between Cross-Power Density Spectrum and Cross-Correlation Function.

UNIT VI

LINEAR SYSTEMS WITH RANDOM INPUTS : Random Signal Response of Linear Systems: System Response – Convolution, Mean and Mean-squared Value of System Response, Autocorrelation Function of Response, Cross-Correlation Functions of Input and Output, Spectral Characteristics of System Response: Power Density Spectrum of Response, Cross-Power Density Spectra of Input and Output, Band pass, Band-Limited and Narrowband Processes, Properties, Modeling of Noise Sources: Resistive (Thermal) Noise Source, Arbitrary Noise Sources, Effective Noise Temperature, Average Noise Figure, Average Noise Figure of cascaded networks.

TEXT BOOKS:

- 1. Probability, Random Variables & Random Signal Principles, Peyton Z. Peebles, TMH, 4th Edition, 2001.
- 2. Probability, Random Variables and Stochastic Processes, Athanasios Papoulis and S.Unnikrisha, PHI, 4th Edition, 2002.

REFERENCE BOOKS:

- 1. Probability Theory and Stochastic Processes B. Prabhakara Rao, BS Publications
- 2. Probability and Random Processes with Applications to Signal Processing, Henry Stark and John W. Woods, Pearson Education, 3rd Edition.
- 3. Schaum's Outline of Probability, Random Variables, and Random Processes.
- 4. An Introduction to Random Signals and Communication Theory, B.P. Lathi, International Textbook, 1968.
- 5. Random Process Ludeman, John Wiley
- 6. Probability Theory and Random Processes, P. Ramesh Babu, McGrawHill, 2015.

OUTCOMES:

After completion of the course, the student will be able to

- Mathematically model the random phenomena and solve simple probabilistic problems.
- Identify different types of random variables and compute statistical averages of these random variables.
- Characterize the random processes in the time and frequency domains.
- Analyze the LTI systems with random inputs.
- Apply these techniques to analyze the systems in the presence of different types of noise.

II Year - I Semester	L	Т	Р	С
11 Teal - I Semester	4	0	0	3
MANAGERIAL ECONOMICS AND FINANCIAL	ANALY	SIS		

(Common to all Branches)

• Course Objectives:

- The Learning objectives of this paper is to understand the concept and nature of Managerial Economics and its relationship with other disciplines and also to understand the Concept of Demand and Demand forecasting, Production function, Input Output relationship, Cost-Output relationship and Cost-Volume-Profit Analysis.
- To understand the nature of markets, Methods of Pricing in the different market structures and to know the different forms of Business organization and the concept of Business Cycles.
- To learn different Accounting Systems, preparation of Financial Statement and uses of different tools for performance evaluation. Finally, it is also to understand the concept of Capital, Capital Budgeting and the techniques used to evaluate Capital Budgeting proposals.

UNIT-I

Introduction to Managerial Economics and demand Analysis:

Definition of Managerial Economics –Scope of Managerial Economics and its relationship with other subjects – Concept of Demand, Types of Demand, Determinants of Demand- Demand schedule, Demand curve, Law of Demand and its limitations- Elasticity of Demand, Types of Elasticity of Demand and Measurement- Demand forecasting and Methods of forecasting..

UNIT – II

Production and Cost Analyses:

Concept of Production function- Cobb-Douglas Production function- Leontief production function - Law of Variable proportions-Isoquants and Isocosts and choice of least cost factor combination-Concepts of Returns to scale and Economies of scale-Different cost concepts: opportunity costs, explicit and implicit costs- Fixed costs, Variable Costs and Total costs –Cost –Volume-Profit analysis-Determination of Breakeven point(simple problems)-Managerial significance and limitations of Breakeven point.

UNIT – III

Introduction to Markets, Theories of the Firm & Pricing Policies:

Market Structures: Perfect Competition, Monopoly, Monopolistic competition and Oligopoly – Features – Price and Output Determination – Managerial Theories of firm: Marris and Williamson's models – other Methods of Pricing: Average cost pricing, Limit Pricing, Market Skimming Pricing, Internet Pricing: Flat Rate Pricing, Usage sensitive pricing and Priority Pricing.

UNIT – IV

Types of Business Organization and Business Cycles:

Features and Evaluation of Sole Trader, Partnership, Joint Stock Company – State/Public Enterprises and their forms – Business Cycles : Meaning and Features – Phases of Business Cycle.

UNIT – V

Introduction to Accounting & Financing Analysis:

Introduction to Double Entry Systems – Preparation of Financial Statements-Analysis and Interpretation of Financial Statements-Ratio Analysis – Preparation of Funds flow and cash flow statements (Simple Problems)

UNIT – VI

Capital and Capital Budgeting: Capital Budgeting: Meaning of Capital-Capitalization-Meaning of Capital Budgeting-Time value of money- Methods of appraising Project profitability: Traditional Methods(pay back period, accounting rate of return) and modern methods(Discounted cash flow method, Net Present Value method, Internal Rate of Return Method and Profitability Index)

Course Outcome:

- *The Learner is equipped with the knowledge of estimating the Demand and demand elasticities for a product and the knowledge of understanding of the Input-Output-Cost relationships and estimation of the least cost combination of inputs.
- * One is also ready to understand the nature of different markets and Price Output determination under various market conditions and also to have the knowledge of different Business Units.
- *The Learner is able to prepare Financial Statements and the usage of various Accounting tools for Analysis and to evaluate various investment project proposals with the help of capital budgeting techniques for decision making.

TEXT BOOKS

- 1. Dr. N. AppaRao, Dr. P. Vijay Kumar: 'Managerial Economics and Financial Analysis', Cengage Publications, New Delhi 2011
- 2. Dr. A. R. Aryasri Managerial Economics and Financial Analysis, TMH 2011
- 3. Prof. J.V.Prabhakararao, Prof. P. Venkatarao. 'Managerial Economics and Financial Analysis', Ravindra Publication.

REFERENCES:

- 1. Dr. B. Kuberudu and Dr. T. V. Ramana: Managerial Economics & Financial Analysis, Himalaya Publishing House, 2014.
- 2. V. Maheswari: Managerial Economics, Sultan Chand.2014
- 3. Suma Damodaran: Managerial Economics, Oxford 2011.
- 4. VanithaAgarwal: Managerial Economics, Pearson Publications 2011.
- 5. Sanjay Dhameja: Financial Accounting for Managers, Pearson.
- 6. Maheswari: Financial Accounting, Vikas Publications.
- 7. S. A. Siddiqui& A. S. Siddiqui: Managerial Economics and Financial Analysis, New Age International Publishers, 2012
- 8. Ramesh Singh, Indian Economy, 7th Edn., TMH2015
- 9. Pankaj Tandon A Text Book of Microeconomic Theory, Sage Publishers, 2015
- 10. Shailaja Gajjala and Usha Munipalle, Univerties press, 2015

II Year - I Semester	L	Т	Р	С
	0	0	3	2

ELECTRONIC DEVICES AND CIRCUITS LAB

Note: The students are required to perform the experiment to obtain the V-I characteristics and to determine the relevant parameters from the obtained graphs.

Electronic Workshop Practice:

- 1. Identification, Specifications, Testing of R, L, C Components (Colour Codes), Potentiometers, Coils, Gang Condensers, Relays, Bread Boards.
- 2. Identification, Specifications and Testing of active devices, Diodes, BJTs, JFETs, LEDs, LCDs, SCR, UJT.
- 3. Soldering Practice- Simple circuits using active and passive components.
- 4. Study and operation of Ammeters, Voltmeters, Transformers, Analog and Digital Multimeter, Function Generator, Regulated Power Supply and CRO..

List of Experiments: (Minimum of Ten Experiments has to be performed)

1. P-N Junction Diode Characteristics

Part A: Germanium Diode (Forward bias& Reverse bias)

Part B: Silicon Diode (Forward Bias only)

2. Zener Diode Characteristics

Part A: V-I Characteristics

Part B: Zener Diode as Voltage Regulator

3. Rectifiers (without and with c-filter)

Part A: Half-wave Rectifier

Part B: Full-wave Rectifier

4. BJT Characteristics(CE Configuration)

Part A: Input Characteristics

- Part B: Output Characteristics
- 5. FET Characteristics(CS Configuration)
 - Part A: Drain Characteristics

Part B: Transfer Characteristics

- 6. SCR Characteristics
- 7. UJT Characteristics
- 8. Transistor Biasing
- 9. CRO Operation and its Measurements
- 10. BJT-CE Amplifier
- 11. Emitter Follower-CC Amplifier
- 12. FET-CS Amplifier

Equipment required:

- **Regulated Power supplies** 1.
- Analog/Digital Storage Oscilloscopes Analog/Digital Function Generators 2.
- 3.
- Digital Multimeters 4.
- 5. Decade Résistance Boxes/Rheostats
- Decade Capacitance Boxes 6.
- Ammeters (Analog or Digital) 7.
- Voltmeters (Analog or Digital) 8.
- Active & Passive Electronic Components 9.

II Voor I Somostor	L	Т	Р	С
II Year - I Semester	0	0	3	2
NETWORKS & ELECTRICAL TECHNO	LOGY LAB			

Learning Objectives:

- To determine resonance frequency, Q-factor of RLC network.
- To analysis time response of first orders RC/RL network for non-sinusoidal inputs.
- To estimate parameters of two port networks
- To understand the concept network theorems in network reduction of electrical networks.
- To determine efficiency of dc shunt machine with actual loading.
- To analyse performance of 3 phase induction motor
- To understand the significance of regulation of an alternators through synchronous impedance method.

PART – A

Any five experiments are to be conducted from each part

- 1. Series and Parallel Resonance Timing, Resonant frequency, Bandwidth and Q-factor determination for RLC network.
- 2. Time response of first order RC/RL network for periodic non-sinusoidal inputs time constant and steady state error determination.
- 3. Two port network parameters Z-Y Parameters, chain matrix and analytical verification.
- 4. Verification of Superposition and Reciprocity theorems.
- 5. Verification of maximum power transfer theorem. Verification on DC, verification on AC with Resistive and Reactive loads.
- 6. Experimental determination of Thevenin's and Norton's equivalent circuits and verification by direct test.

PART – B

- 1. Magnetization characteristics of D.C. Shunt generator. Determination of critical field resistance.
- 2. Speed control of D.C. Shunt motor by Armature & flux control methods
- 3. Brake test on DC shunt motor. Determination of performance characteristics.
- 4. OC & SC tests on Single-phase transformer (Predetermination of efficiency and regulation at given power factors and determination of equivalent circuit).
- 5. Brake test on 3-phase Induction motor (performance characteristics).
- 6. Regulation of alternator by synchronous impedance method

Learning Outcomes:

- Able to analyse RLC circuits and understand resonant frequency and Q-factor.
- Able to determine first order RC/RL networks of periodic non- sinusoidal waveforms.
- Able to apply network theorems to analyze the electrical network.
- Able to describe the performance of dc shunt machine.
- Able to investigate the performance of 1-phase transformer.
- Able to perform tests on 3-phase induction motor and alternator to determine their performance characteristic

	L	Т	Р	С
II Year - II Semester	4	0	0	3

ELECTRONIC CIRCUIT ANALYSIS

Objectives:

The main objectives of this course are:

- Small signal high frequency BJT transistor amplifier Hybrid- π equivalent circuit and the expressions for conductances and capacitances are derived.
- Cascading of single stage amplifiers is discussed. Expressions for overall voltage gain are derived.
- The concept of feedback is introduced. Effect of negative feedback on amplifier characteristics is explained and necessary equations are derived.
- Basic principle of oscillator circuits is explained and different oscillator circuits are given with their analysis.
- Power amplifiers Class A, Class B, Class C, Class AB and other types of amplifiers are analyzed.
- Different types of tuned amplifier circuits are analyzed.

Outcomes:

At the end of this course the student can able to:

- Design and analysis of small signal high frequency transistor amplifier using BJT and FET.
- Design and analysis of multi stage amplifiers using BJT and FET and Differential amplifier using BJT
- Derive the expressions for frequency of oscillation and condition for oscillation of RC and LC oscillators and their amplitude and frequency stability concept.
- Know the classification of the power and tuned amplifiers and their analysis with performance comparison.

Syllabus:

UNIT-I Small Signal High Frequency Transistor Amplifier models:

BJT: Transistor at high frequencies, Hybrid- π common emitter transistor model, Hybrid π conductances, Hybrid π capacitances, validity of hybrid π model, determination of high-frequency parameters in terms of low-frequency parameters, CE short circuit current gain, current gain with resistive load, cut-off frequencies, frequency response and gain bandwidth product.

FET: Analysis of common Source and common drain Amplifier circuits at high frequencies.

UNIT-II

Multistage Amplifiers : Classification of amplifiers, methods of coupling, cascaded transistor amplifier and its analysis, analysis of two stage RC coupled amplifier, high input resistance transistor amplifier circuits and their analysis-Darlington pair amplifier, Cascode amplifier, Boot-strap emitter follower, Analysis of multi stage amplifiers using FET, Differential amplifier using BJT.

UNIT -III

Feedback Amplifiers : Feedback principle and concept, types of feedback, classification of amplifiers, feedback topologies, Characteristics of negative feedback amplifiers, Generalized analysis of feedback amplifiers, Performance comparison of feedback amplifiers, Method of analysis of feedback amplifiers.

Unit-IV

Oscillators: Oscillator principle, condition for oscillations, types of oscillators, RC-phase shift and Wein bridge oscillators with BJT and FET and their analysis, Generalized analysis of LC Oscillators, Hartley and Colpitt's oscillators with BJT and FET and their analysis, Frequency and amplitude stability of oscillators.

UNIT-V

Power Amplifiers: Classification of amplifiers, Class A power Amplifiers and their analysis, Harmonic Distortions, Class B Push-pull amplifiers and their analysis, Complementary symmetry push pull amplifier, Class AB power amplifier, Class-C power amplifier, Thermal stability and Heat sinks, Distortion in amplifiers.

UNIT-VI

Tuned Amplifiers : Introduction, Q-Factor, small signal tuned amplifier, capacitance single tuned amplifier, double tuned amplifiers, effect of cascading single tuned amplifiers on band width, effect of cascading double tuned amplifiers on band width, staggered tuned amplifiers, stability of tuned amplifiers, wideband amplifiers.

Text Books:

- 1. Integrated Electronics- J. Millman and C.C. Halkias, Tata Mc Graw-Hill, 1972.
- 2. Electronic Devices and Circuits- Salivahanan, N.Suressh Kumar, A. Vallavaraj, TATA McGraw Hill, Second Edition

References:

- 1. Electronic Circuit Analysis and Design Donald A. Neaman, Mc Graw Hill.
- 2. Electronic Devices and Circuits Theory Robert L. Boylestad and Louis Nashelsky, Pearson/Prentice Hall, Tenth Edition.
- 3. Electronic Circuit Analysis-B.V.Rao,K.R.Rajeswari, P.C.R.Pantulu,K.B.R.Murthy, Pearson Publications.
- 4. Microelectronic Circuits-Sedra A.S. and K.C. Smith, Oxford University Press, Sixth Edition.

II Year - II Semester	L	Т	Р	С
II I ear - II Semester	4	0	0	3

CONTROL SYSTEMS

Course objectives

- 1. To introduce the concepts of open loop and closed loop systems, mathematical models of mechanical and electrical systems, and concepts of feedback
- 2. To study the characteristics of the given system in terms of the transfer function and introducing various approaches to reduce the overall system for necessary analysis
- 3. To develop the acquaintance in analyzing the system response in time-domain and frequency domain in terms of various performance indices
- 4. To analyze the system in terms of absolute stability and relative stability by different approaches
- 5. To design different control systems for different applications as per given specifications
- 6. To introduce the concepts of state variable analysis, design and also the concepts of controllability and observability

UNIT-1

Introduction

System Control System, Open Loop Control System, Closed loop Control System, Different Examples Mathematical models of Physical Systems

Differential equations of physical systems, Transfer functions, Block diagram Algebra, Signal flow graphs with illustrative examples

Effects of Feedback

Feedback Characteristics and its advantages, Linearizing effect of feedback

UNIT-2

Controller Components

DC Servomotor (Armature Controlled and Field Controlled) with necessary derivation for transfer function, AC Servomotor and its transfer function, AC Tachometer, Potentiometer, Synchros, AC Position Control Systems

Time Response Analysis

Standard test Signals, Time response of first and second order systems, steady state errors and error constants, Effect of adding a zero to a system, Design specifications of second order systems, Performance indices

UNIT-3

Concepts of Stability and Algebraic Criteria

The concept of Stability, Necessary Conditions for Stability, Routh-Hurwitz Srability Criterion, Relative stability analysis,

The Root Locus Technique

Introduction, The Root Locus concepts, Construction of Root Loci

UNIT-4

Frequency response analysis

Introduction, Correlation between time and frequency response, Polar Plots, Bode Plots, Nyquist Stability Criterion

UNIT-5

Introduction to Design

The design problem, Preliminary consideration of classical design, Realization of basic Compensators, Cascade compensation in time domain and frequency domain, Tuning of PID Controllers

UNIT-6

State Variable Analysis and Design

Introduction, Concepts of State, State Variables and State models, State models for linear continuous-time systems, State variables and linear discrete-time systems, Solution of state equations and Concepts of Controllability and Observability.

Text Book

I.J.Nagarath and M.Gopal, " Control System Engineering," New Age International Publishers, Fifth Edition

Reference Books

- 1. Katsuhiko Ogata, "Modern Control Engineering," Pearson, Fifth Edition
- 2. S. Salivahanan, R. Rengaraj, and G. R. Venkata Krishnan, "Control Systems Engineering," Pearson, First Impression
- 3. Benjamin C. Kuo, Frarid Golnaraghi, "Automatic Control Systems," Wiley Student Edition, Eight Edition
- 4. PadmaRaju and Reddy, "Instrumentation and Control Systems", McGrawHill Education, 2016

Course Outcomes

- 1. This course introduces the concepts of feedback and its advantages to various control systems
- 2. The performance metrics to design the control system in time-domain and frequency domain are introduced.
- 3. Control systems for various applications can be designed using time-domain and frequency domain analysis.
- 4. In addition to the conventional approach, the state space approach for the analysis of control systems is also introduced.

II Year - II Semester	L	Т	Р	С
	4	0	0	3

EM WAVES AND TRANSMISSION LINES

OBJECTIVES:

The main objectives of this course are to understand:

- 1. Fundamentals of steady electric and magnetic fields using various laws
- 2. The concept of static and time varying Maxwell equations and power flow using pointing theorem
- 3. Wave characteristics in different media for normal and oblique incidence
- 4. Various concepts of transmission lines and impedance measurements

SYLLABUS:

UNIT I:

Review of Co-ordinate Systems, **Electrostatics:**, Coulomb's Law, Electric Field Intensity, Electric Flux Density, Gauss Law and Applications, Electric Potential, Maxwell's Two Equations for Electrostatic Fields, Energy Density, Illustrative Problems. Convection and Conduction Currents, Dielectric Constant, Continuity Equation, Relaxation Time, Poisson's and Laplace's Equations; Capacitance – Parallel Plate, Coaxial Capacitors, Illustrative Problems. **[1,5]**

UNIT II: Magneto Statics : Biot-Savart Law, Ampere's Circuital Law and Applications, Magnetic Flux Density, Maxwell's Two Equations for Magnetostatic Fields, Magnetic Scalar and Vector Potentials, Forces due to Magnetic Fields, Ampere's Force Law, Inductances and Magnetic Energy. Illustrative Problems. **[1,5] Maxwell's Equations (Time Varying Fields):** Faraday's Law and Transformer emf, Inconsistency of Ampere's

Maxwell's Equations (Time Varying Fields): Faraday's Law and Transformer emf, Inconsistency of Ampere's Law and Displacement Current Density, Maxwell's Equations in Different Final Forms and Word Statements. Conditions at a Boundary Surface : Dielectric-Dielectric and Dielectric-Conductor Interfaces. Illustrative Problems. [1,2]

UNIT III: EM Wave Characteristics - I: Wave Equations for Conducting and Perfect Dielectric Media, Uniform Plane Waves – Definition, All Relations Between E & H, Sinusoidal Variations, Wave Propagation in Lossy dielectrics, lossless dielectrics, free space, wave propagation in good conductors, skin depth, Polarization & Types. Illustrative Problems. **[1,2,3]**

UNIT IV: EM Wave Characteristics – II: Reflection and Refraction of Plane Waves – Normal and Oblique Incidences, for both Perfect Conductor and Perfect Dielectrics, Brewster Angle, Critical Angle and Total Internal Reflection, Surface Impedance. Poynting Vector and Poynting Theorem – Applications, Power Loss in a Plane Conductor. Illustrative Problems. [2,3,4]

UNIT V: Transmission Lines - I: Types, Parameters, $T\&\pi$ Equivalent Circuits, Transmission Line Equations, Primary & Secondary Constants, Expressions for Characteristic Impedance, Propagation Constant, Phase and Group Velocities, Infinite Line, Lossless lines, distortion less lines, Loading - Types of Loading. Illustrative Problems. [1,7]

UNIT VI: Transmission Lines – II : Input Impedance Relations, SC and OC Lines, Reflection Coefficient, VSWR. Low loss radio frequency lines and UHF Transmission lines, UHF Lines as Circuit Elements; Impedance Transformations $\lambda/4$, $\lambda/2$, $\lambda/8$ Lines –. Smith Chart – Construction and Applications, Quarter wave transformer, Stub Matching-single & double, Illustrative Problems. [1,7]

TEXT BOOKS:

- 1. Elements of Electromagnetic Matthew N.O. Sadiku, Oxford Univ. Press, 3rd ed., 2001.
- 2. Electromagnetic Waves and Radiating Systems E.C. Jordan and K.G. Balmain, PHI, 2nd Edition, 2000.

REFERENCE BOOKS:

- 1. Electromagnetic Fields and Wave Theory -GSN Raju, Pearson Education 2006
- 2. Engineering Electromagnetics:Nathan Ida, Springer(India)Pvt.Ltd., New Delhi, 2nd ed., 2005.
- 3. Engineering Electromagnetics William H. Hayt Jr. and John A. Buck, TMH, 7th ed., 2006.
- 4. Electromagnetic Field Theory and Transmission Lines: G SasiBhushana Rao, Wiley India 2013
- 5. Transmission Lines and Networks–Umesh Sinha, Satya Prakashan (Tech. India Publications), New Delhi, 2001.
- 6. Electromagnetic waves and transmission lines R S Rao, PHI, EEE edition

OUTCOMES:

At the end of this course the student can able to:

1. Determine E and H using various laws and applications of electric & magnetic fields

- 2. Apply the Maxwell equations to analyze the time varying behavior of EM waves
- 3. Gain the knowledge in uniform plane wave concept and characteristics of uniform plane wave in various media
- 4. Calculate Brewster angle, critical angle and total internal reflection
- 5. Derive the expressions for input impedance of transmission lines
- 6. Calculate reflection coefficient, VSWR etc. using smith chart

II Year - II Semester	Termostan	L	Т	Р	С
11 Year - 11 Semester	4	0	0	3	
	ANALOG COMMUNICATIONS				

UNIT I

AMPLITUDE MODULATION : Introduction to communication system, Need for modulation, Frequency Division Multiplexing, Amplitude Modulation, Definition, Time domain and frequency domain description, single tone modulation, power relations in AM waves, Generation of AM waves, square law Modulator, Switching modulator, Detection of AM Waves; Square law detector, Envelope detector.

UNIT II

DSB & SSB MODULATION : Double side band suppressed carrier modulators, time domain and frequency domain description, Generation of DSBSC Waves, Balanced Modulators, Ring Modulator, Coherent detection of DSB-SC Modulated waves, COSTAS Loop. Frequency domain description, Frequency discrimination method for generation of AM SSB Modulated Wave, Time domain description, Phase discrimination method for generating AM SSB Modulated waves. Demodulation of SSB Waves, Vestigial side band modulation: Frequency description, Generation of VSB Modulated wave, Time domain description, Envelope detection of a VSB Wave pulse Carrier, Comparison of AM Techniques, Applications of different AM Systems.

UNIT III

ANGLE MODULATION : Basic concepts, Frequency Modulation: Single tone frequency modulation, Spectrum Analysis of Sinusoidal FM Wave, Narrow band FM, Wide band FM, Constant Average Power, Transmission bandwidth of FM Wave - Generation of FM Waves, Direct FM, Detection of FM Waves: Balanced Frequency discriminator, Zero crossing detector, Phase locked loop, Comparison of FM & AM.

UNIT IV

TRANSMITTERS & RECEIVERS: Radio Transmitter - Classification of Transmitter, AM Transmitter, Effect of feedback on performance of AM Transmitter, FM Transmitter – Variable reactance type and phase modulated FM Transmitter, frequency stability in FM Transmitter. **Radio Receiver** - Receiver Types - Tuned radio frequency receiver, Superhetrodyne receiver, RF section and Characteristics - Frequency changing and tracking, Intermediate frequency, AGC, FM Receiver, Comparison with AM Receiver, Amplitude limiting. Communication Receivers, extensions of superheterodyne principle and additional circuits.

UNIT V

NOISE : Review of noise and noise sources, noise figure, Noise in Analog communication Systems, Noise in DSB& SSB System, Noise in AM System, Noise in Angle Modulation Systems, Threshold effect in Angle Modulation System, Pre-emphasis & de-emphasis

UNIT VI

PULSE MODULATION : Time Division Multiplexing,, Types of Pulse modulation, PAM (Single polarity, double polarity) PWM: Generation & demodulation of PWM, PPM, Generation and demodulation of PPM, TDM Vs FDM

TEXT BOOKS:

- 1. Principles of Communication Systems H Taub & D. Schilling, Gautam Sahe, TMH, 2007 3rd Edition.
- 2. Communication Systems B.P. Lathi, BS Publication, 2006.

REFERENCES:

- 1. Principles of Communication Systems Simon Haykin, John Wiley, 2nd Ed.,.
- 2. Electronics & Communication System George Kennedy and Bernard Davis, TMH 2004.
- 3. Communication Systems- R.P. Singh, SP Sapre, Second Edition TMH, 2007.
- 4. Fundamentals of Communication Systems John G. Proakis, Masond, Salehi PEA, 2006.
- 5. Electronic Communication systems Tomasi, Pearson.

Course Objectives:

Students undergoing this course, are expected to

- 1. Familiarize with the fundamentals of analog communication systems
- 2. Familiarize with various techniques for analog modulation and demodulation of signals
- 3. Distinguish the figure of merits of various analog modulation methods
- 4. Develop the ability to classify and understand various fuctional blocks of radiao transmitters and receivers
- 5. Familiarize with basic techniques for generating and demodulating various pulse modulated signals

Course Outcomes:

After undergoing the course, students will be able to

- 1. Differentiate various Analog modulation and demodulation schemes and their spectral characteristics
- 2. Analyze noise characteristics of various analog modulation methods
- 3. Analyze various functional blocks of radiao transmitters and receivers
- 4. Design simple analog systems for various modulation techniques.

II Year - II Semester			\mathbf{L}	Т	Р	С
11 Year - 11 Semester			4	0	0	3

PULSE AND DIGITAL CIRCUITS

OBJECTIVES

The student will be made

- To understand the concept of wave shaping circuits, Switching Characteristics of diode and transistor.
- To study the design and analysis of various Multivibrators.
- To understand the functioning of different types of time-base Generators.
- To learn the working of logic families & Sampling Gates.

UNIT I

LINEAR WAVESHAPING: High pass, low pass RC circuits, their response for sinusoidal, step, pulse, square, ramp and exponential inputs. RC network as differentiator and integrator; Attenuators, its applications in CRO probe, RL and RLC circuits and their response for step input, Ringing circuit.

UNIT II

NON-LINEAR WAVE SHAPING : Diode clippers, Transistor clippers, clipping at two independent levels, Transfer characteristics of clippers, Emitter coupled clipper; Clamping operation, clamping circuits using diode with different inputs, Clamping circuit theorem, practical clamping circuits, effect of diode characteristics on clamping voltage, Transfer characteristics of clampers.

UNIT III

SWITCHING CHARACTERISTICS OF DEVICES : Diode as a switch, piecewise linear diode characteristics, Design and analysis of Transistor as a switch, Break down voltage consideration of transistor, saturation parameters of Transistor and their variation with temperature, Design of transistor switch, transistor-switching times.

Bistable Multivibrator: Analysis And Design of Fixed Bias, Self Bias Bistable Multi Vibrator, Collector Catching Diodes, Commutating Capacitors, Triggering of Binary Circuits, Emitter Coupled Bistable Multivibrator (Schmitt Trigger).

UNIT IV

Monostable Multivibrator: Analysis and Design of Collector Coupled Monostable Multi vibrator, Triggering of Monostable Multivibrator, Applications of Monostable Multivibrator.

Astable Multivibrator: Analysis and Design of Collector Coupled Astable Multivibrator, Application of Astable Multivibrator as a Voltage to Frequency Converter.

UNIT V

VOLTAGE TIME BASE GENERATORS:

General features of a time base signal, Methods of generating time base waveform Exponential Sweep Circuits, Negative Resistance Switches, basic principles in Miller and Bootstrap time base generators, Transistor Miller time base generator, Transistor Bootstrap time base generator.

UNIT VI

LOGIC FAMILIES & SAMPLING GATES:

LOGIC FAMILIES: Diode Logic, Transistor Logic, Diode-Transistor Logic, Transistor-Transistor Logic, Emitter Coupled Logic, AOI Logic, Comparison of Logic Families.

SAMPLING GATES: Basic Operating Principles of Sampling Gates, Diode Unidirectional Sampling Gate and Two-Diode Bi-Directional Sampling Gate, Four-Diode gates, Six-Diode Gates, Reduction of Pedestal in Sampling Gates, Applications of Sampling Gates.

TEXT BOOKS:

- 1. Pulse, Digital and Switching Waveforms J. Millman and H. Taub, McGraw-Hill
- 2. Pulse and Digital Circuits A. Anand Kumar, PHI, 2005

REFERENCES:

- 1. Pulse, Digital and Switching Waveforms J. Millman and H. Taub, Mothiki S Prakash Rao McGraw-Hill, Second Edition, 2007.
- 2. Solid State Pulse circuits David A. Bell, PHI, 4th Edn., 2002
- 3. Pulse & Digital Circuits by Venkata Rao, K, Ramasudha K, Manmadha Rao, G., Pearson, 2010

OUTCOMES

After going through this course the student will be able to

- Design linear and non-linear wave shaping circuits.
- Apply the fundamental concepts of wave shaping for various switching and signal generating circuits.
- Design different multivibrators and time base generators.
- Utilize the non sinusoidal signals in many experimental research areas.

II Year - II Semester	L	Т	Р	С
II Tear - II Semester	4	0	0	3

MANAGEMENT SCIENCE

Course Objectives:

*To familiarize with the process of management and to provide basic insight into select contemporary management practices

*To provide conceptual knowledge on functional management and strategic management.

UNIT I

Introduction to Management: Concept –nature and importance of Management –Generic Functions of Management – Evaluation of Management thought- Theories of Motivation – Decision making process-Designing organization structure- Principles of organization – Organizational typology- International Management: Global Leadership and Organizational behavior Effectiveness(GLOBE) structure

UNIT II

Operations Management: Principles and Types of Management – Work study- Statistical Quality Control- Control charts (P-chart, R-chart, and C-chart) Simple problems- Material Management: Need for Inventory control- EOQ, ABC analysis (simple problems) and Types of ABC analysis (HML, SDE, VED, and FSN analysis).

UNIT III

Functional Management: Concept of HRM, HRD and PMIR- Functions of HR Manager- Wage payment plans(Simple Problems) – Job Evaluation and Merit Rating - Marketing Management- Functions of Marketing – Marketing strategies based on product Life Cycle, Channels of distributions. Operationlizing change through performance management.

UNIT IV

Project Management: (PERT/CPM): Development of Network – Difference between PERT and CPM Identifying Critical Path- Probability- Project Crashing (Simple Problems)

UNIT V

Strategic Management: Vision, Mission, Goals, Strategy – Elements of Corporate Planning Process – Environmental Scanning – SWOT analysis- Steps in Strategy Formulation and Implementation, Generic Strategy Alternatives. Global strategies, theories of Multinational Companies.

UNIT VI

Contemporary Management Practice: Basic concepts of MIS, MRP, Justin- Time(JIT) system, Total Quality Management(TQM), Six sigma and Capability Maturity Model(CMM) Levies, Supply Chain Management, Enterprise Resource Planning (ERP), Business Process outsourcing (BPO), Business process Re-engineering and Bench Marking, Balanced Score Card.

Course Outcome:

*After completion of the Course the student will acquire the knowledge on management functions, global leadership and organizational behavior.

*Will familiarize with the concepts of functional management project management and strategic management.

Text Books

1. Dr. P. Vijaya Kumar & Dr. N. Appa Rao, 'Management Science' Cengage, Delhi, 2012.

2. Dr. A. R. Aryasri, *Management Science*' TMH 2011.

References

- 1. Koontz & Weihrich: 'Essentials of management' TMH 2011
- 2. Seth & Rastogi: Global Management Systems, Cengage learning, Delhi, 2011
- 3. Robbins: Organizational Behaviour, Pearson publications, 2011
- 4. Kanishka Bedi: Production & Operations Management, Oxford Publications, 2011
- 5. Philip Kotler & Armstrong: Principles of Marketing, Pearson publications
- 6. Biswajit Patnaik: Human Resource Management, PHI, 2011
- 7. Hitt and Vijaya Kumar: Starategic Management, Cengage learning
- 8. Prem Chadha: Performance Management, Trinity Press(An imprint of Laxmi Publications Pvt. Ltd.) Delhi 2015.
- 9. Anil Bhat& Arya Kumar : Principles of Management, Oxford University Press, New Delhi, 2015.

II Year - II Semester	L	Т	Р	С
	0	0	3	2

ELECTRONIC CIRCUIT ANALYSIS LAB

Note: The students are required to design the circuit and perform the simulation using Multisim/ Equivalent Industrial Standard Licensed simulation software tool. Further they are required to verify the result using necessary hardware equipment.

List of Experiments :(Minimum of Ten Experiments has to be performed)

- 1. Determination of f_T of a given transistor.
- 2. Voltage-Series Feedback Amplifier
- 3. Current-Shunt Feedback Amplifier
- 4. RC Phase Shift/Wien Bridge Oscillator
- 5. Hartley/Colpitt's Oscillator
- 6. Two Stage RC Coupled Amplifier
- 7. Darlington Pair Amplifier
- 8. Bootstrapped Emitter Follower
- 9. Class A Series-fed Power Amplifier
- 10. Transformer-coupled Class A Power Amplifier
- 11. Class B Push-Pull Power Amplifier
- 12. Complementary Symmetry Class B Push-Pull Power Amplifier
- 13. Single Tuned Voltage Amplifier
- 14. Double Tuned Voltage Amplifier

Equipment required:

Software:

- i. Multisim/ Equivalent Industrial Standard Licensed simulation software tool.
- ii. Computer Systems with required specifications

Hardware:

- 10. Regulated Power supplies
- 11. Analog/Digital Storage Oscilloscopes
- 12. Analog/Digital Function Generators
- 13. Digital Multimeters
- 14. Decade Résistance Boxes/Rheostats
- 15. Decade Capacitance Boxes
- 16. Ammeters (Analog or Digital)
- 17. Voltmeters (Analog or Digital)
- 18. Active & Passive Electronic Components

II Voon II Somoston	I Voor II Somostor	L	Т	Р	С
II Year - II Semester	0	0	3	2	
	ANALOG COMMUNICATIONS LAB				

List of Experiments (Twelve experiments to be done- **The students have to calculate the relevant parameters**) - (a. Hardware, b. MATLAB Simulink, c. MATLAB Communication tool box)

- A. Amplitude Modulation Mod. & Demod.
- B. AM DSB SC Mod. & Demod.
- C. Spectrum Analysis of Modulated signal using Spectrum Analyser
- D. Diode Detector
- E. Pre-emphasis & De-emphasis
- F. Frequency Modulation Mod. & Demod.
- G. AGC Circuits
- H. Sampling Theorem
- I. Pulse Amplitude Modulation Mod. & Demod.
- J. PWM , PPM Mod. & Demod.
- K. PLL
- L. Radio receiver characteristics

Equipments & Software required:

Software :

- i.) Computer Systems with latest specifications
- ii) Connected in Lan (Optional)
- iii) Operating system (Windows XP)
- iv) Simulations software (Simulink & MATLAB)

Equipment:

- 1.
 RPS
 0 30 V

 2.
 CRO
 0 20 M Hz.
- 3. Function Generators 0 1 M Hz
- 4. Components
- 5. Multimeters
- 6. Spectrum Analyser

III Year - I Semester	L	Т	Р	С
III Tear - I Semester	4	0	0	3

COMPUTER ARCHITECTURE AND ORGANIZATION

OBJECTIVES:

- Understand the architecture of a modern computer with its various processing units. Also the Performance measurement of the computer system.
- In addition to this the memory management system of computer.

UNIT -I:

Basic Structure Of Computers: Functional unit, Basic Operational concepts, Bus structures, System Software, Performance, The history of computer development.

UNIT -II:

Machine Instruction and Programs:

Instruction and Instruction Sequencing: Register Transfer Notation, Assembly Language Notation, Basic Instruction Types,

Addressing Modes, Basic Input/output Operations, The role of Stacks and Queues in computer programming equation. Component of Instructions: Logic Instructions, shift and Rotate Instructions

UNIT -III:

Type of Instructions: Arithmetic and Logic Instructions, Branch Instructions, Addressing Modes, Input/output Operations

UNIT -IV:

INPUT/OUTPUT ORGANIZATION: Accessing I/O Devices, Interrupts: Interrupt Hardware, Enabling and Disabling Interrupts, Handling Multiple Devices, Direct Memory Access,

Buses: Synchronous Bus, Asynchronous Bus, Interface Circuits, Standard I/O Interface: Peripheral Component Interconnect (PCI) Bus, Universal Serial Bus (USB)

UNIT -V:

The MEMORY SYSTEMS: Basic memory circuits, Memory System Consideration, Read-Only Memory: ROM, PROM, EPROM, EEPROM, Flash Memory,

Cache Memories: Mapping Functions, INTERLEAVING **Secondary Storage:** Magnetic Hard Disks, Optical Disks,

UNIT -VI:

Processing Unit: Fundamental Concepts: Register Transfers, Performing An Arithmetic Or Logic Operation, Fetching A Word From Memory,

Execution of Complete Instruction, Hardwired Control,

Micro programmed Control: Microinstructions, Micro program Sequencing, Wide Branch Addressing Microinstructions with next –Address Field

OUTCOMES:

- Students can understand the architecture of modern computer.
- They can analyze the Performance of a computer using performance equation
- Understanding of different instruction types.
- 4. Students can calculate the effective address of an operand by addressing modes
- 5. They can understand how computer stores positive and negative numbers.
- 6. Understanding of how a computer performs arithmetic operation of positive and negative numbers.

TEXT BOOKS:

1. Computer Organization, Carl Hamacher, Zvonks Vranesic, Safea Zaky, 5th Edition, McGraw Hill.

2. Computer Architecture and Organization , John P. Hayes ,3rd Edition, McGraw Hill.

REFERENCE BOOKS:

- 1. Computer Organization and Architecture William Stallings Sixth Edition, Pearson/PHI
- 2. Structured Computer Organization Andrew S. Tanenbaum, 4th Edition PHI/Pearson
- 3. Fundamentals or Computer Organization and Design, Sivaraama Dandamudi Springer Int. Edition.
- 4. "Computer Organization and Design: The Hardware/Software Interface" by David A. Patterson and John L. Hennessy.
- 5. J.P. Hayes, "Computer Architecture and Organization", McGraw-Hill, 1998.

LINEAR IC APPLICATIONS

OBJECTIVES

- To understand the basic operation & performance parameters of differential amplifiers.
- To understand & learn the measuring techniques of performance parameters of OP-AMP
- To learn the linear and non-linear applications of operational amplifiers.
- To understand the analysis & design of different types of active filters using opamps
- To learn the internal structure, operation and applications of different analog ICs
- To Acquire skills required for designing and testing integrated circuits

UNIT I

INTEGRATED CIRCUITS: Differential Amplifier- DC and AC analysis of Dual input Balanced output Configuration, Properties of other differential amplifier configuration (Dual Input Unbalanced Output, Single Ended Input – Balanced/ Unbalanced Output), DC Coupling and Cascade Differential Amplifier Stages, Level translator.

UNIT II

Characteristics of OP-Amps, Integrated circuits-Types, Classification, Package Types and Temperature ranges, Power supplies, Op-amp Block Diagram, ideal and practical Op-amp Specifications, DC and AC characteristics, 741 op-amp & its features, Op-Amp parameters & Measurement, Input & Out put Off set voltages & currents, slew rate, CMRR, PSRR, drift, Frequency Compensation techniques.

UNIT III

LINEAR and NON-LINEAR APPLICATIONS OF OP-AMPS: Inverting and Non-inverting amplifier, Integrator and differentiator, Difference amplifier, Instrumentation amplifier, AC amplifier, V to I, I to V converters, Buffers. Non- Linear function generation, Comparators, Multivibrators, Triangular and Square wave generators, Log and Anti log Amplifiers, Precision rectifiers.

UNIT IV

ACTIVE FILTERS, ANALOG MULTIPLIERS AND MODULATORS: Design & Analysis of Butterworth active filters – 1st order, 2nd order LPF, HPF filters. Band pass, Band reject and all pass filters. Four Quadrant Multiplier, IC 1496, Sample & Hold circuits.

UNIT V

TIMERS & PHASE LOCKED LOOPS: Introduction to 555 timer, functional diagram, Monostable and Astable operations and applications, Schmitt Trigger; PLL - introduction, block schematic, principles and description of individual blocks, 565 PLL, Applications of PLL – frequency multiplication, frequency translation, AM, FM & FSK demodulators. Applications of VCO (566).

UNIT VI

DIGITAL TO ANALOG AND ANALOG TO DIGITAL CONVERTERS: Introduction, basic DAC techniques, weighted resistor DAC, R-2R ladder DAC, inverted R-2R DAC, and IC 1408 DAC, Different types of ADCs – parallel Comparator type ADC, counter type ADC, successive approximation ADC and dual slope ADC.DAC and ADC Specifications, Specifications AD 574 (12 bit ADC).

TEXT BOOKS:

- 1. Linear Integrated Circuits D. Roy Choudhury, New Age International (p) Ltd, 2nd Edition, 2003.
- 2. Op-Amps & Linear ICs Ramakanth A. Gayakwad, PHI,1987.
- 3. Operational Amplifiers-C.G. Clayton, Butterworth & Company Publ. Ltd./Elsevier, 1971

REFERENCES:

- 1. Operational Amplifiers & Linear Integrated Circuits –Sanjay Sharma ;SK Kataria &Sons;2nd Edition,2010
- 2. Design with Operational Amplifiers & Analog Integrated Circuits Sergio Franco, McGraw Hill, 1988.
- 3. OP AMPS and Linear Integrated Circuits concepts and Applications, James M Fiore, Cenage Learning India Ltd.
- 4. Operational Amplifiers & Linear Integrated Circuits–R.F.Coughlin & Fredrick Driscoll, PHI, 6th Edition.
- 5. Operational Amplifiers & Linear ICs David A Bell, Oxford Uni. Press, 3rd Edition

OUTCOMES

- Design circuits using operational amplifiers for various applications.
- Analyze and design amplifiers and active filters using Op-amp.
- Diagnose and trouble-shoot linear electronic circuits.
- Understand the gain-bandwidth concept and frequency response of the amplifier configurations.
- Understand thoroughly the operational amplifiers with linear integrated circuits.

III Year - I Semester	L	Т	Р	С
	4	0	0	3
	TIONG			

DIGITAL IC APPLICATIONS

OBJECTIVES

The main objectives of this course are:

- Introduction of digital logic families and interfacing concepts for digital design is considered.
- VHDL fundamentals were discussed to modeling the digital system design blocks.
- VHDL compilers, simulators and synthesis tools are described, which are used to verify digital systems in a technology-independent fashion.
- Design and implementation of combinational and sequential digital logic circuits is explained.

Outcomes:

At the end of this course the student can able to:

- Understand the structure of commercially available digital integrated circuit families.
- Learn the IEEE Standard 1076 Hardware Description Language (VHDL).
- Model complex digital systems at several levels of abstractions, behavioral, structural, simulation, synthesis and rapid system prototyping.
- Analyze and design basic digital circuits with combinatorial and sequential logic circuits using VHDL.

Syllabus:

UNIT-I

Digital Logic Families and Interfacing: Introduction to logic families, CMOS logic, CMOS steady state and dynamic electrical behavior, CMOS logic families. Bipolar logic, transistor-transistor logic, TTL families, CMOS/TTL interfacing, low voltage CMOS logic and interfacing, Emitter coupled logic.

(Text book-1)

UNIT-II

Introduction to VHDL: Design flow, program structure, levels of abstraction, Elements of VHDL: Data types, data objects, operators and identifiers. Packages, Libraries and Bindings, Subprograms. VHDL Programming using structural and data flow modeling.

(Text book-2)

UNIT-III

Behavioral Modeling: Process statement, variable assignment statement, signal assignment statement, wait statement, if statement, case statement ,null statement, loop statement, exit statement, next statement ,assertion statement, more on signal assignment statement ,Inertial Delay Model, Transport Delay Model ,Creating Signal Waveforms, Signal Drivers , Other Sequential Statements , Multiple Processes. Logic Synthesis, Inside a logic Synthesizer.

(Text book-2)

UNIT-IV

Combinational Logic Design: Binary Adder-Subtractor, Ripple Adder, Look Ahead Carry Generator, ALU, Decoders, encoders, multiplexers and demultiplexers, parity circuits, comparators, Barrel Shifter, Simple Floating-Point Encoder, Dual Priority Encoder, Design considerations of the above combinational logic circuits with relevant Digital ICs, modeling of above ICs using VHDL.

(Text book-1)

UNIT-V

Sequential Logic Design: SSI Latches and flip flops, Ring Counter, Johnson Counter, Design of Modulus N Synchronous Counters, Shift Registers, Universal Shift Registers, Design considerations of the above sequential logic circuits with relevant Digital ICs, modeling of above ICs using VHDL.

(Text book-1)

UNIT-VI:

Synchronous and Asynchronous Sequential Circuits: Basic design steps: State diagram, state table, state assignment, choice of flip flops and derivation of next state and output expressions, timing diagram. State assignment problem: One hot encoding. Mealy and Moore type FSM for serial adder, VHDL code for the serial adder. Analysis of Asynchronous circuits, State Reduction, State Assignment. A complete design example: The vending machine controller.

(Reference text book- 1)

Text Books:

1. Digital Design Principles & Practices – John F. Wakerly, PHI/ Pearson Education Asia, 3rd Ed., 2005.

2. VHDL Primer – J. Bhasker, Pearson Education/ PHI, 3rd Edition.

References:

1. Fundamentals of Digital Logic with VHDL Design- Stephen Brown, ZvonkoVranesic, McGrawHill, 3rd Edition.

III Year - I Semester	L	Т	Р	С
	4	0	0	3

DIGITAL COMMUNICATIONS

UNIT I

PULSE DIGITAL MODULATION: Elements of digital communication systems, advantages of digital communication systems, Elements of PCM: Sampling, Quantization & Coding, Quantization error, Companding in PCM systems. Differential PCM systems (DPCM). Delta modulation, its draw backs, adaptive delta modulation, comparison of PCM and DM systems, noise in PCM and DM systems.

UNIT II

DIGITAL MODULATION TECHNIQUES: Introduction, ASK, FSK, PSK, DPSK, DEPSK, QPSK, M-ary PSK, ASK, FSK, similarity of BFSK and BPSK.

UNIT III

DATA TRANSMISSION : Base band signal receiver, probability of error, the optimum filter, matched filter, probability of error using matched filter, coherent reception, non-coherent detection of FSK, calculation of error probability of ASK, BPSK, BFSK, QPSK.

UNIT IV

INFORMATION THEORY: Discrete messages, concept of amount of information and its properties. Average information, Entropy and its properties. Information rate, Mutual information and its properties.

UNIT V

SOURCE CODING: Introductions, Advantages, Shannon's theorem, Shanon-Fano coding, Huffman coding, efficiency calculations, channel capacity of discrete and analog Channels, capacity of a Gaussian channel, bandwidth –S/N trade off.

UNIT VI

LINEAR BLOCK CODES: Introduction, Matrix description of Linear Block codes, Error detection and error correction capabilities of Linear block codes, Hamming codes, Binary cyclic codes, Algebraic structure, encoding, syndrome calculation, BCH Codes.

CONVOLUTION CODES: Introduction, encoding of convolution codes, time domain approach, transform domain approach. Graphical approach: state, tree and trellis diagram decoding using Viterbi algorithm.

TEXT BOOKS:

1. Digital communications - Simon Haykin, John Wiley, 2005

2. Principles of Communication Systems - H. Taub and D. Schilling, TMH, 2003

REFERENCES:

1. Digital and Analog Communication Systems - Sam Shanmugam, John Wiley, 2005.

- Digital Communications John Proakis, TMH, 1983. Communication Systems Analog & Digital Singh & Sapre, TMH, 2004.
- 3. Modern Analog and Digital Communication B.P.Lathi, Oxford reprint, 3rd edition, 2004.

Students undergoing this course are expected to:

Course Objectives:

- 1.Understand different pulse digital modulation techniques and their comparision
- 2. Familiarize various digital modulation techniques and calculation of their error probabilities
- 3. Understand the concept of entropy and different source coding techniques
- 4. Familirize with block codes, cyclic codes and convolutional codes

Course Outcomes:

After undergoing the course students will be able to:

- 1. Determine the performance of different waveform coding techniques for the generation and digital representation of the signals.
- 2. Determine the probability of error for various digital modulation schemes
- 3. Analyze different source coding techniques
- 4. Compute and analyze different error control coding schemes for the reliable transmission of digital information over the channel.

III Year - I Semester	L	Т	Р	С
III Tear - I Semester	4	0	0	3

ANTENNA AND WAVE PROPAGATION

OBJECTIVES

The student will be able to

- understand the applications of the electromagnetic waves in free space.
- introduce the working principles of various types of antennas
- discuss the major applications of antennas with an emphasis on how antennas are employed to meet electronic system requirements.
- understand the concepts of radio wave propagation in the atmosphere.

UNIT I

ANTENNA FUNDAMENTALS: Introduction, Radiation Mechanism – single wire, 2 wire, dipoles, Current Distribution on a thin wire antenna. Antenna Parameters - Radiation Patterns, Patterns in Principal Planes, Main Lobe and Side Lobes, Beamwidths, Polarization, Beam Area, Radiation Intensity, Beam Efficiency, Directivity, Gain and Resolution, Antenna Apertures, Aperture Efficiency, Effective Height, illustrated Problems.

UNIT II

THIN LINEAR WIRE ANTENNAS: Retarded Potentials, Radiation from Small Electric Dipole, Quarter wave Monopole and Half wave Dipole – Current Distributions, Evaluation of Field Components, Power Radiated, Radiation Resistance, Beamwidths, Directivity, Effective Area and Effective Height. Natural current distributions, fields and patterns of Thin Linear Center-fed Antennas of different lengths, Radiation Resistance at a point which is not current maximum. Antenna Theorems – Applicability and Proofs for equivalence of directional characteristics, Loop Antennas: Small Loops - Field Components, Comparison of far fields of small loop and short dipole, Concept of short magnetic dipole, D and R_r relations for small loops.

UNIT III

ANTENNA ARRAYS : 2 element arrays – different cases, Principle of Pattern Multiplication, N element Uniform Linear Arrays – Broadside, End-fire Arrays, EFA with Increased Directivity, Derivation of their characteristics and comparison; Concept of Scanning Arrays. Directivity Relations (no derivations). Related Problems. Binomial Arrays, Effects of Uniform and Non-uniform Amplitude Distributions, Design Relations. Arrays with Parasitic Elements, Yagi-Uda Arrays, Folded Dipoles and their characteristics.

UNIT IV

NON-RESONANT RADIATORS : Introduction, Traveling wave radiators – basic concepts, Long wire antennas – field strength calculations and patterns, Microstrip Antennas-Introduction, Features, Advantages and Limitations, Rectangular Patch Antennas –Geometry and Parameters, Impact of different parameters on characteristics. Broadband Antennas: Helical Antennas – Significance, Geometry, basic properties; Design considerations for monofilar helical antennas in Axial Mode and Normal Modes (Qualitative Treatment).

UNIT V

VHF, UHF AND MICROWAVE ANTENNAS : Reflector Antennas : Flat Sheet and Corner Reflectors. Paraboloidal Reflectors – Geometry, characteristics, types of feeds, F/D Ratio, Spill Over, Back Lobes, Aperture Blocking, Off-set Feeds, Cassegrain Feeds.

Horn Antennas – Types, Optimum Horns, Design Characteristics of Pyramidal Horns; Lens Antennas – Geometry, Features, Dielectric Lenses and Zoning, Applications, Antenna Measurements – Patterns Required, Set Up, Distance Criterion, Directivity and Gain Measurements (Comparison, Absolute and 3-Antenna Methods).

UNIT VI

WAVE PROPAGATION : Concepts of Propagation – frequency ranges and types of propagations. Ground Wave Propagation–Characteristics, Parameters, Wave Tilt, Flat and Spherical Earth Considerations. Sky Wave Propagation – Formation of Ionospheric Layers and their Characteristics, Mechanism of Reflection and Refraction, Critical Frequency, MUF and Skip Distance – Calculations for flat and spherical earth cases, Optimum Frequency, LUHF, Virtual Height, Ionospheric Abnormalities, Ionospheric Absorption.

Fundamental Equation for Free-Space Propagation, Basic Transmission Loss Calculations. Space Wave Propagation – Mechanism, LOS and Radio Horizon. Tropospheric Wave Propagation – Radius of Curvature of path, Effective Earth's Radius, Effect of Earth's Curvature, Field Strength Calculations, M-curves and Duct Propagation, Tropospheric Scattering.

TEXT BOOKS

1. Antennas for All Applications – John D. Kraus and Ronald J. Marhefka, 3rd Edition, TMH, 2003.

2. Electromagnetic Waves and Radiating Systems – E.C. Jordan and K.G. Balmain, PHI, 2nd Edition, 2000.

REFERENCES

- 1. Antenna Theory C.A. Balanis, John Wiley and Sons, 2nd Edition, 2001.
- 2. Antennas and Wave Propagation K.D. Prasad, Satya Prakashan, Tech India Publications, New Delhi, 2001.
- 3. Transmission and Propagation E.V.D. Glazier and H.R.L. Lamont, The Services Text Book of Radio, vol. 5, Standard Publishers Distributors, Delhi.
- 4. Electronic and Radio Engineering F.E. Terman, McGraw-Hill, 4th Edition, 1955.
- 5. Antennas John D. Kraus, McGraw-Hill, 2nd Edition, 1988.

OUTCOMES

After going through this course the student will be able to

- Identify basic antenna parameters.
- Design and analyze wire antennas, loop antennas, reflector antennas, lens antennas, horn antennas and microstrip antennas
- Quantify the fields radiated by various types of antennas
- Design and analyze antenna arrays
- Analyze antenna measurements to assess antenna's performance
- Identify the characteristics of radio wave propagation

III Year - I Semester	L	Т	Р	С
	0	0	3	2

PULSE & DIGITAL CIRCUITS LAB

- 1. Linear wave shaping.
- 2. Non Linear wave shaping Clippers.
- 3. Non Linear wave shaping Clampers.
- 4. Transistor as a switch.
- 5. Study of Logic Gates & Some applications.
- 6. Study of Flip-Flops & some applications.
- 7. Sampling Gates.
- 8. Astable Multivibrator.
- 9. Monostable Multivibrator.
- **10. Bistable Multivibrator.**
- **11. Schmitt Trigger.**
- 12. UJT Relaxation Oscillator.
- **13.** Bootstrap sweep circuit.

Equipment required for Laboratory:

- 1. RPS 0 30 V
- 2. CRO 0 20 M Hz.
- 3. Function Generators 0 1 M Hz
- 4. Components
- 5. Multi Meters

III Year - I Semester	\mathbf{L}	Т	Р	С	
		0	0	3	2
	L IC APPLICATIONS LAB				

Minimum Twelve Experiments to be conducted :

- 1. Study of OP AMPs IC 741, IC 555, IC 565, IC 566, IC 1496 functioning, parameters and Specifications.
- 2. OP AMP Applications Adder, Subtractor, Comparator Circuits.
- 3. Integrator and Differentiator Circuits using IC 741.
- 4. Active Filter Applications LPF, HPF (first order)
- 5. Active Filter Applications BPF, Band Reject (Wideband) and Notch Filters.
- 6. IC 741 Oscillator Circuits Phase Shift and Wien Bridge Oscillators.
- 7. Function Generator using OP AMPs.
- 8. IC 555 Timer Monostable Operation Circuit.
- 9. IC 555 Timer Astable Operation Circuit.
- 10. Schmitt Trigger Circuits using IC 741 and IC 555.
- 11. IC 565 PLL Applications.
- 12. IC 566 VCO Applications.
- 13. Voltage Regulator using IC 723.
- 14. Three Terminal Voltage Regulators 7805, 7809, 7912.

Equipment required for Laboratories:

- 1. RPS
- 2. CRO
- 3. Function Generator
- 4. Multi Meters
- 5. IC Trainer Kits (Optional)
- 6. Bread Boards
- 7. Components:- IC741, IC555, IC565, IC1496, IC723, 7805, 7809, 7912 and other essential components.
- 8. Analog IC Tester

III Year - I Semester	L	Т	Р	С	
III I cai - I Semester	0	0	3	2	
DICA LABORATORY					

<u>Note:</u> The students are required to design and draw the internal logical structure of the following Digital Integrated Circuits and to develop VHDL/Verilog HDL Source code, perform simulation using relevant simulator and analyze the obtained simulation results using necessary synthesizer.

All the experiments are required to verify and implement the logical operations on the latest FPGA Hardware in the Laboratory.

List of Experiments :(Minimum of Ten Experiments has to be performed)

- 1. Realization of Logic Gates
- 2. Design of Full Adder using 3 modeling systems
- 3. 3 to 8 Decoder -74138
- 4. 8 to 3 Encoder (with and without parity)
- 5. 8 x 1 Multiplexer-74151 and 2x 4 De-multiplexer-74155
- 6. 4- Bit comparator-7485
- 7. D Flip-Flop-7474
- 8. Decade counter -7490
- 9. Shift registers-7495
- 10. 8-bit serial in-parallel out and parallel in-serial out
- 11. Fast In & Fast Out (FIFO)
- 12. MAC (Multiplier & Accumulator)
- 13. ALU Design.

Equipment/Software required:

- 1. Xilinx Vivado software / Equivalent Industry Standard Software
- 2. Xilinx Hardware / Equivalent hardware
- 3. Personal computer system with necessary software to run the programs and Implement.

III Veen I Connector	\mathbf{L}	Т	Р	С
III Year - I Semester	0	3	0	0

PROFESSIONAL ETHICSAND HUMAN VALUES

Course Objectives:

*To give basic insights and inputs to the student to inculcate Human values to grow as a responsible human beings with proper personality.

*Professional Ethics instills the student to maintain ethical conduct and discharge their professional duties.

UNIT I: Human Values:

Morals, Values and Ethics – Integrity –Trustworthiness - Work Ethics – Service Learning – Civic Virtue – Respect for others – Living Peacefully – Caring – Sharing – Honesty –Courage – Value Time – Co-operation – Commitment – Empathy – Self-confidence – Spirituality- Character.

UNIT: II: Principles for Harmony:

Truthfulness – Customs and Traditions -Value Education – Human Dignity – Human Rights – Fundamental Duties - Aspirations and Harmony (I, We & Nature) – Gender Bias - Emotional Intelligence – Salovey – Mayer Model – Emotional Competencies – Conscientiousness.

UNIT III: Engineering Ethics and Social Experimentation:

History of Ethics - Need of Engineering Ethics - Senses of Engineering Ethics- Profession and Professionalism — Self Interest - Moral Autonomy – Utilitarianism – Virtue Theory - Uses of Ethical Theories - Deontology- Types of Inquiry –Kohlberg's Theory - Gilligan's Argument –Heinz's Dilemma - Comparison with Standard Experiments — Learning from the Past –Engineers as Managers – Consultants and Leaders – Balanced Outlook on Law - Role of Codes – Codes and Experimental Nature of Engineering.

UNIT IV: Engineers' Responsibilities towards Safety and Risk:

Concept of Safety - Safety and Risk – Types of Risks – Voluntary v/sInvoluntary Risk – Consequences - Risk Assessment – Accountability – Liability - Reversible Effects - Threshold Levels of Risk - Delayed v/sImmediate Risk - Safety and the Engineer – Designing for Safety – Risk-Benefit Analysis-Accidents.

UNIT V: Engineers' Duties and Rights:

Concept of Duty - Professional Duties – Collegiality - Techniques for Achieving Collegiality – Senses of Loyalty -Consensus and Controversy - Professional and Individual Rights –Confidential and Proprietary Information -Conflict of Interest-Ethical egoism - Collective Bargaining – Confidentiality - Gifts and Bribes - Problem solving-Occupational Crimes- Industrial Espionage- Price Fixing-Whistle Blowing.

UNIT VI: Global Issues:

Globalization and MNCs –Cross Culture Issues - Business Ethics – Media Ethics - Environmental Ethics – Endangering Lives - Bio Ethics - Computer Ethics - War Ethics – Research Ethics - Intellectual Property Rights.

• Related Cases Shall be dealt where ever necessary.

Outcome:

- *It gives a comprehensive understanding of a variety issues that are encountered by every professional in discharging professional duties.
- *It provides the student the sensitivity and global outlook in the contemporary world to fulfill the professional obligations effectively.

References:

- 1. Professional Ethics by R. Subramaniam Oxford Publications, New Delhi.
- 2. Ethics in Engineering by Mike W. Martin and Roland Schinzinger Tata McGraw-Hill 2003.
- 3. Professional Ethics and Morals by Prof.A.R.Aryasri, DharanikotaSuyodhana Maruthi Publications.
- 4. Engineering Ethics by Harris, Pritchard and Rabins, Cengage Learning, New Delhi.
- 5. Human Values & Professional Ethics by S. B. Gogate, Vikas Publishing House Pvt. Ltd., Noida.
- 6. Engineering Ethics & Human Values by M.Govindarajan, S.Natarajan and V.S.SenthilKumar-PHI Learning Pvt. Ltd 2009.
- 7. Professional Ethics and Human Values by A. Alavudeen, R.Kalil Rahman and M. Jayakumaran University Science Press.
- 8. Professional Ethics and Human Values by Prof.D.R.Kiran-Tata McGraw-Hill 2013
- 9. Human Values And Professional Ethics by Jayshree Suresh and B. S. Raghavan, S.Chand Publications

III Year - II Semester	L	Т	Р	С
III Tear - II Semester	4	0	0	3

MICROPROCESSORS AND MICROCONTROLLERS

UNIT-I:

8086 ARCHITECTURE: Main features, pin diagram/description, 8086 microprocessor family, 8086 internal architecture, bus interfacing unit, execution unit, interrupts and interrupt responses, 8086 system timing, minimum mode and maximum mode configuration.

UNIT-II:

8086 PROGRAMMING: Program development steps, instructions, addressing modes, assembler directives, writing simple programs with an assembler, assembly language program development tools.

UNIT-III:

8086 INTERFACING : Semiconductor memories interfacing (RAM,ROM), 8254 software programmable timer/counter, Intel 8259 programmable interrupt controller, software and hardware interrupt applications, Intel 8237a DMA controller, Intel 8255 programmable peripheral interface, keyboard interfacing, alphanumeric displays (LED,7-segment display, multiplexed 7-segment display, LCD), Intel 8279 programmable keyboard/display controller, stepper motor, A/D and D/A converters.

UNIT-IV:

80386 AND 80486 MICROPROCESSORS: Introduction, programming concepts, special purpose registers, memory organization, moving to protected mode, virtual mode, memory paging mechanism, architectural differences between 80386 and 80486 microprocessors.

UNIT-V:

Intel 8051 MICROCONTROLLER: Architecture, hardware concepts, input/output ports and circuits, external memory, counters/timers, serial data input/output, interrupts.

Assembly language programming: Instructions, addressing modes, simple programs.

Interfacing: keyboard, displays (LED, 7-segment display unit), A/D and D/A converters.

UNIT-VI:

PIC MICROCONTROLLER: Introduction, characteristics of PIC microcontroller, PIC microcontroller families, memory organization, parallel and serial input and output, timers, Interrupts, PIC 16F877 architecture, instruction set of the PIC 16F877.

Text Books:

- 1. Microprocessors and Interfacing Programming and Hard ware by Douglas V Hall, SSSP Rao, Tata McGraw Hill Education Private Limited, 3rd Edition.
- 2. The 8051 Microcontroller & Embedded Systems Using Assembly and C by Kenneth J.Ayala, Dhananjay V.Gadre, Cengage Learninbg, India Edition.

References:

- 1. The Intel Microprocessors-Architecture, Programming, and Interfacing by Barry B.Brey, Pearson, Eighth Edition-2012.
- 2. Microprocessors and Microcontrollers-Architecture, Programming and System Design by Krishna Kant, PHI Learning Private Limited, Second Edition, 2014.
- 3. Microprocessors and Microcontrollers by N.Senthil Kumar, M.Saravanan and S.Jeevananthan, Oxford University Press, Seventh Impression 2013

III Year - II Semester	L	Т	Р	С
III Tear - II Semester	4	0	0	3

MICROWAVE ENGINEERING

OBJECTIVES

The student will

- Understand fundamental characteristics of waveguides and Microstrip lines through electromagnetic field analysis.
- Understand the basic properties of waveguide components and Ferrite materials composition
- Understand the function, design, and integration of the major microwave components oscillators, power amplifier.
- Understand a Microwave test bench setup for measurements.

UNIT I

MICROWAVE TRANSMISSION LINES: Introduction, Microwave Spectrum and Bands, Applications of Microwaves. Rectangular Waveguides – TE/TM mode analysis, Expressions for Fields, Characteristic Equation and Cut-off Frequencies, Filter Characteristics, Dominant and Degenerate Modes, Sketches of TE and TM mode fields in the cross-section, Mode Characteristics – Phase and Group Velocities, Wavelengths and Impedance Relations; Power Transmission and Power Losses in Rectangular Guide, Impossibility of TEM mode. Related Problems.

UNIT II

CIRCULAR WAVEGUIDES: Introduction, Nature of Fields, Characteristic Equation, Dominant and Degenerate Modes.

Cavity Resonators- Introduction, Rectangular and Cylindrical Cavities, Dominant Modes and Resonant Frequencies, Q factor and Coupling Coefficients, Excitation techniques- waveguides and cavities, Related Problems.

MICROSTRIP LINES- Introduction, Zo Relations, Effective Dielectric Constant, Losses, Q factor.

UNIT III

MICROWAVE TUBES :Limitations and Losses of conventional tubes at microwave frequencies. Re-entrant Cavities, Microwave tubes – O type and M type classifications. O-type tubes :2 Cavity Klystrons – Structure, Velocity Modulation Process and Applegate Diagram, Bunching Process and Small Signal Theory –Expressions for o/p Power and Efficiency, Applications, Reflex Klystrons – Structure, Applegate Diagram and Principle of working, Mathematical Theory of Bunching, Power Output, Efficiency, Electronic Admittance; Oscillating Modes and o/p Characteristics, Electronic and Mechanical Tuning, Applications, Related Problems.

UNIT - IV

HELIX TWTS: Significance, Types and Characteristics of Slow Wave Structures; Structure of TWT and Suppression of Oscillations, Nature of the four Propagation Constants(Qualitative treatment).

M-type Tubes

Introduction, Cross-field effects, Magnetrons – Different Types, 8-Cavity Cylindrical Travelling Wave Magnetron – Hull Cut-off Condition, Modes of Resonance and PI-Mode Operation, Separation of PI-Mode, o/p characteristics.

UNIT V

WAVEGUIDE COMPONENTS AND APPLICATIONS - I :Coupling Mechanisms – Probe, Loop, Aperture types. Waveguide Discontinuities – Waveguide irises, Tuning Screws and Posts, Matched Loads. Waveguide Attenuators – Resistive Card, Rotary Vane types; Waveguide Phase Shifters – Dielectric, Rotary Vane types. Scattering Matrix– Significance, Formulation and Properties. S-Matrix Calculations for – 2 port Junction, E-plane and H-plane Tees, Magic Tee, Hybrid Ring; Directional Couplers – 2Hole, Bethe Hole types, Ferrite Components– Faraday Rotation, S-Matrix Calculations for Gyrator, Isolator, Circulator, Related Problems.

UNIT VI

MICROWAVE SOLID STATE DEVICES: Introduction, Classification, Applications. TEDs – Introduction, Gunn Diode – Principle, RWH Theory, Characteristics, Basic Modes of Operation, Oscillation Modes. Avalanche Transit Time Devices – Introduction, IMPATT and TRAPATT Diodes – Principle of Operation and Characteristics. **MICROWAVE MEASUREMENTS:** Description of Microwave Bench – Different Blocks and their Features, Precautions; Microwave Power Measurement – Bolometer Method. Measurement of Attenuation, Frequency, Qfactor, Phase shift, VSWR, Impedance Measurement.

TEXT BOOKS:

1. Microwave Devices and Circuits – Samuel Y. Liao, PHI, 3rd Edition, 1994.

2.Foundations for Microwave Engineering – R.E. Collin, IEEE Press, John Wiley, 2nd Edition, 2002.

REFERENCES:

- 1. Microwave Principles Herbert J. Reich, J.G. Skalnik, P.F. Ordung and H.L. Krauss, CBS Publishers and Distributors, New Delhi, 2004
- 2. Microwave Engineering- Annapurna Das and Sisir K.Das, Mc Graw Hill Education, 3rd Edition.
- 3. Microwave and Radar Engineering-M.Kulkarni, Umesh Publications, 3rd Edition.
- 4. Microwave Engineering G S N Raju, I K International
- 5. Microwave and Radar Engineering G Sasibhushana Rao Pearson

OUTCOMES : After going through this course the student will be able to

- Design different modes in waveguide structures
- Calculate S-matrix for various waveguide components and splitting the microwave energy in a desired direction
- Distinguish between Microwave tubes and Solid State Devices, calculation of efficiency of devices.
- Measure various microwave parameters using a Microwave test bench

III Year - II Semester	L	Т	Р	C
	4	0	0	3

VLSI DESIGN

Objectives:

The main objectives of this course are:

- Basic characteristics of MOS transistor and examines various possibilities for configuring inverter circuits and aspects of latch-up are considered.
- Design processes are aided by simple concepts such as stick and symbolic diagrams but the key element is a set of design rules, which are explained clearly.
- Basic circuit concepts are introduced for MOS processes we can set out approximate circuit parameters which greatly ease the design process.

Outcomes:

At the end of this course the student can able to:

- Understand the properties of MOS active devices and simple circuits configured when using them and the reason for such encumbrances as ratio rules by which circuits can be interconnected in silicon.
- Know three sets of design rules with which nMOS and CMOS designs may be fabricated.
- Understand the scaling factors determining the characteristics and performance of MOS circuits in silicon.

Syllabus:

UNIT-I:

Introduction and Basic Electrical Properties of MOS Circuits: Introduction to IC technology, Fabrication process: nMOS, pMOS and CMOS. I_{ds} versus V_{ds} Relationships, Aspects of MOS transistor Threshold Voltage, MOS transistor Trans, Output Conductance and Figure of Merit. nMOS Inverter, Pull-up to Pull-down Ratio for nMOS inverter driven by another nMOS inverter, and through one or more pass transistors. Alternative forms of pull-up, The CMOS Inverter, Latch-up in CMOS circuits, Bi-CMOS Inverter, Comparison between CMOS and BiCMOS technology.

(Text Book-1)

UNIT-II:

MOS and Bi-CMOS Circuit Design Processes: MOS Layers, Stick Diagrams, Design Rules and Layout, General observations on the Design rules, 2µm Double Metal, Double Poly, CMOS/BiCMOS rules, 1.2µm Double Metal, Double Poly CMOS rules, Layout Diagrams of NAND and NOR gates and CMOS inverter, Symbolic Diagrams-Translation to Mask Form.

(Text Book-1)

UNIT-III:

Basic Circuit Concepts: Sheet Resistance, Sheet Resistance concept applied to MOS transistors and Inverters, Area Capacitance of Layers, Standard unit of capacitance, Some area Capacitance Calculations, The Delay Unit, Inverter Delays, Driving large capacitive loads, Propagation Delays, Wiring Capacitances, Choice of layers.

Scaling of MOS Circuits: Scaling models and scaling factors, Scaling factors for device parameters, Limitations of scaling, Limits due to sub threshold currents, Limits on logic levels and supply voltage due to noise and current density. Switch logic, Gate logic.

(Text Book-1)

UNIT-IV:

Chip Input and Output circuits: ESD Protection, Input Circuits, Output Circuits and L(di/dt) Noise, On-Chip clock Generation and Distribution.

Design for Testability: Fault types and Models, Controllability and Observability, Ad Hoc Testable Design Techniques, Scan Based Techniques and Built-In Self Test techniques.

(Text Book-2)

UNIT-V:

FPGA Design: FPGA design flow, Basic FPGA architecture, FPGA Technologies, FPGA families- Altera Flex 8000FPGA, Altera Flex 10FPGA, Xilinx XC4000 series FPGA, Xilinx Spartan XL FPGA, Xilinx Spartan II FPGAs, Xilinx Vertex FPGA. Case studies: FPGA Implementation of Half adder and full adder.

Introduction to synthesis: Logic synthesis, RTL synthesis, High level Synthesis.

(Reference Text Book-1)

UNIT-VI:

Introduction to Low Power VLSI Design: Introduction to Deep submicron digital IC design, Low Power CMOS Logic Circuits: Over view of power consumption, Low –power design through voltage scaling, Estimation and optimisation of switching activity, Reduction of switching capacitance. Interconnect Design, Power Grid and Clock Design.

(Text Book-2)

Text Books:

- 1. Essentials of VLSI Circuits and Systems Kamran Eshraghian, Douglas and A. Pucknell and Sholeh Eshraghian, Prentice-Hall of India Private Limited, 2005 Edition.
- 2. CMOS Digital Integrated Circuits Analysis and Design- <u>Sung-Mo Kang</u>, <u>Yusuf Leblebici</u>, Tata McGraw-Hill Education, 2003.

References:

- 1. Advanced Digital Design with the Verilog HDL, Michael D.Ciletti, Xilinx Design Series, Pearson Education
- 2. Analysis and Design of Digital Integrated Circuits in Deep submicron Technology, 3'rd edition, David Hodges.

III Voor II Somostor	L	Т	Р	С
III Year - II Semester	4	0	0	3

DIGITAL SIGNAL PROCESSING

OBJECTIVES

The student will be able to

- Analyze the Discrete Time Signals and Systems
- Know the importance of FFT algorithm for computation of Discrete Fourier Transform
- Understand the various implementations of digital filter structures
- Learn the FIR and IIR Filter design procedures
- Know the need of Multirate Processing
- Learn the concepts of DSP Processors

UNIT I INTRODUCTION: Introduction to Digital Signal Processing: Discrete time signals & sequences, Classification of Discrete time systems, stability of LTI systems, Invertability, Response of LTI systems to arbitrary inputs. Solution of Linear constant coefficient difference equations. Frequency domain representation of discrete time signals and systems. Review of Z-transforms, solution of difference equations using Z-transforms, System function.

UNIT II DISCRETE FOURIER SERIES & FOURIER TRANSFORMS: Properties of discrete Fourier series, DFS representation of periodic sequences, Discrete Fourier transforms: Properties of DFT, linear filtering methods based on DFT, Fast Fourier transforms (FFT) - Radix-2 decimation in time and decimation in frequency FFT Algorithms, Inverse FFT.

UNIT III. DESIGN OF IIR DIGITAL FILTERS& REALIZATIONS: Analog filter approximations – Butter worth and Chebyshev, Design of IIR Digital filters from analog filters, Design Examples, Analog and Digital frequency transformations. Basic structures of IIR systems, Transposed forms.

UNIT IV DESIGN OF FIR DIGITAL FILTERS & REALIZATIONS:

Characteristics of FIR Digital Filters, frequency response. Design of FIR Digital Filters using Window Techniques

and Frequency Sampling technique, Comparison of IIR & FIR filters.

Basic structures of FIR systems, Lattice structures, Lattice-ladder structures

UNIT V MULTIRATE DIGITAL SIGNAL PROCESSING: Introduction, Decimation, Interpolation Sampling rate conversion, Implementation of sampling rate converters, *Applications – Sub-band Coding of Speech Signals*, *Implementation of Digital Filter Banks*, *Trans-multiplexers*.

UNIT VI INTRODUCTION TO DSP PROCESSORS: Introduction to programmable DSPs: Multiplier and Multiplier Accumulator, Modified bus structures and memory access schemes in P-DSPs ,Multiple Access Memory, Multiported memory, VLIW architecture, Pipelining, Special addressing modes, On-Chip Peripherals. Architecture of TMS320C5X: Introduction, Bus Structure, Central Arithmetic Logic Unit, Auxiliary Register ALU, Index Register, Block Move Address Register, Parallel Logic Unit, Memory mapped registers, program controller, some flags in the status registers, On- chip memory, On-chip peripherals.

TEXT BOOKS:

- 1. Digital Signal Processing, Principles, Algorithms, and Applications: John G. Proakis, Dimitris G.Manolakis, Pearson Education / PHI, 2007.
- 2. Discrete Time Signal Processing A.V.Oppenheim and R.W. Schaffer, PHI
- Digital Signal Processors Architecture, Programming and Applications, B.Venkataramani, M.Bhaskar, TATA McGraw Hill, 2002
- 4. Digital Signal Processing K Raja Rajeswari, I.K. International Publishing House

Reference Books:

- 1. Digital Signal Processing: Andreas Antoniou, TATA McGraw Hill, 2006
- 2. Digital Signal Processing: MH Hayes, Schaum's Outlines, TATA Mc-Graw Hill, 2007.
- 3. DSP Primer C. Britton Rorabaugh, Tata McGraw Hill, 2005.
- 4. Fundamentals of Digital Signal Processing using Matlab Robert J. Schilling, Sandra
- L. Harris, Thomson, 2007.
- 5. Digital Signal Processing Alan V. Oppenheim, Ronald W. Schafer, PHI Ed., 2006
- 6. Digital Signal Processing Ramesh babu, Sci Tech publications

OUTCOMES

After going through this course the student will be able to

- Apply the difference equations concept in the anayziation of Discrete time systems
- Use the FFT algorithm for solving the DFT of a given signal
- Design a Digital filter (FIR&IIR) from the given specifications
- Realize the FIR and IIR structures from the designed digital filter.
- Use the Multirate Processing concepts in various applications(eg: Design of phase shifters, Interfacing of digital systems...)
- Apply the signal processing concepts on DSP Processor.

III Year - II Semester

L T P C

4 0 0 3

OOPS THROUGH JAVA OPEN ELECTIVE

OBJECTIVES:

- Understanding the OOP's concepts, classes and objects, threads, files, applets, swings and act.
- This course introduces computer programming using the JAVA programming language with objectoriented programming principles.
- Emphasis is placed on event-driven programming methods, including creating and manipulating objects, classes, and using Java for network level programming and middleware development

UNIT-I:

Introduction to OOP, procedural programming language and object oriented language, principles of OOP, applications of OOP, history of java, java features, JVM, program structure.

Variables, primitive data types, identifiers, literals, operators, expressions, precedence rules and associativity, primitive type conversion and casting, flow of control.

UNIT-II:

Classes and objects, class declaration, creating objects, methods, constructors and constructor overloading, garbage collector, importance of static keyword and examples, this keyword, arrays, command line arguments, nested classes.

UNIT-III:

Inheritance, types of inheritance, super keyword, final keyword, overriding and abstract class. Interfaces, creating the packages, using packages, importance of CLASSPATH and java.lang package. Exception handling, importance of try, catch, throw, throws and finally block, user-defined exceptions, Assertions.

UNIT-IV:

Multithreading: introduction, thread life cycle, creation of threads, thread priorities, thread synchronization, communication between threads. Reading data from files and writing data to files, random access file,

UNIT-V:

Applet class, Applet structure, Applet life cycle, sample Applet programs. Event handling: event delegation model, sources of event, Event Listeners, adapter classes, inner classes.

UNIT-VI:

AWT: introduction, components and containers, Button, Label, Checkbox, Radio Buttons, List Boxes, Choice Boxes, Container class, Layouts, Menu and Scrollbar.

OUTCOMES:

- Understand Java programming concepts and utilize Java Graphical User Interface in Program writing.
- Write, compile, execute and troubleshoot Java programming for networking concepts.
- Build Java Application for distributed environment.
- Design and Develop multi-tier applications.

• Identify and Analyze Enterprise applications.

TEXT BOOKS:

- 1. The complete Reference Java, 8th edition, Herbert Schildt, TMH.
- 2. Programming in JAVA, Sachin Malhotra, Saurabh Choudary, Oxford.
- 3. Introduction to java programming, 7th edition by Y Daniel Liang, Pearson.

REFERENCE BOOKS:

- 1. Swing: Introduction, JFrame, JApplet, JPanel, Componets in Swings, Layout Managers in
- 2. Swings, JList and JScrollPane, Split Pane, JTabbedPane, JTree, JTable, Dialog Box.

DATA MINING OPEN ELECTIVE

OBJECTIVES:

- Students will be enabled to understand and implement classical models and algorithms in data warehousing and data mining.
- They will learn how to analyze the data, identify the problems, and choose the relevant models and algorithms to apply.
- They will further be able to assess the strengths and weaknesses of various methods and algorithms and to analyze their behavior.

UNIT –I

Introduction: Why Data Mining? What Is Data Mining?1.3 What Kinds of Data Can Be Mined?1.4 What Kinds of Patterns Can Be Mined? Which Technologies Are Used? Which Kinds of Applications Are Targeted? Major Issues in Data Mining. Data Objects and Attribute Types, Basic Statistical Descriptions of Data, Data Visualization, Measuring Data Similarity and Dissimilarity

UNIT –II

Data Pre-processing: Data Preprocessing: An Overview, Data Cleaning, Data Integration, Data Reduction, Data Transformation and Data Discretization

UNIT –III

Classification: Basic Concepts, General Approach to solving a classification problem, Decision Tree Induction: Working of Decision Tree, building a decision tree, methods for expressing an attribute test conditions, measures for selecting the best split, Algorithm for decision tree induction.

UNIT –IV

Classification: Alterative Techniques, Bayes' Theorem, Naïve Bayesian Classification, Bayesian Belief Networks

UNIT –V

Association Analysis: Basic Concepts and Algorithms: Problem Defecation, Frequent Item Set generation, Rule generation, compact representation of frequent item sets, FP-Growth Algorithm. (Tan & Vipin)

UNIT –VI

Cluster Analysis: Basic Concepts and Algorithms: Overview: What Is Cluster Analysis? Different Types of Clustering, Different Types of Clusters; K-means: The Basic K-means Algorithm, K-means Additional Issues, Bisecting K-means, Strengths and Weaknesses; Agglomerative Hierarchical Clustering: Basic Agglomerative Hierarchical Clustering Algorithm DBSCAN: Traditional Density Center-Based Approach, DBSCAN Algorithm, Strengths and Weaknesses. (Tan & Vipin)

OUTCOMES:

- Understand stages in building a Data Warehouse
- Understand the need and importance of preprocessing techniques
- Understand the need and importance of Similarity and dissimilarity techniques
- Analyze and evaluate performance of algorithms for Association Rules.
- Analyze Classification and Clustering algorithms

TEXT BOOKS:

- 1. Introduction to Data Mining: Pang-Ning Tan & Michael Steinbach, Vipin Kumar, Pearson.
- 2. Data Mining concepts and Techniques, 3/e, Jiawei Han, Michel Kamber, Elsevier.

REFERENCE BOOKS:

- 1. Data Mining Techniques and Applications: An Introduction, Hongbo Du, Cengage Learning.
- 2. Data Mining : Vikram Pudi and P. Radha Krishna, Oxford.
- 3. Data Mining and Analysis Fundamental Concepts and Algorithms; Mohammed J. Zaki, Wagner Meira, Jr, Oxford
- 4. Data Warehousing Data Mining & OLAP, Alex Berson, Stephen Smith, TMH.

INDUSTRIAL ROBOTICS OPEN ELECTIVE

Course Objectives:

- 1. To give students practice in applying their knowledge of mathematics, science, and Engineering and to expand this knowledge into the vast area of robotics.
- 2. The students will be exposed to the concepts of robot kinematics, Dynamics, Trajectory planning.
- 3. Mathematical approach to explain how the robotic arm motion can be described.
- 4. The students will understand the functioning of sensors and actuators.

UNIT-I

INTRODUCTION: Automation and Robotics, CAD/CAM and Robotics – An over view of Robotics – present and future applications – classification by coordinate system and control system.

UNIT – II

COMPONENTS OF THE INDUSTRIAL ROBOTICS: Function line diagram representation of robot arms, common types of arms. Components, Architecture, number of degrees of freedom – Requirements and challenges of end effectors, determination of the end effectors, comparison of Electric, Hydraulic and Pneumatic types of locomotion devices.

UNIT – III

MOTION ANALYSIS: Homogeneous transformations as applicable to rotation and translation – problems.

MANIPULATOR KINEMATICS: Specifications of matrices, D-H notation joint coordinates and world coordinates Forward and inverse kinematics – problems.

UNIT – IV

Differential transformation and manipulators, Jacobians – problems Dynamics: Lagrange – Euler and Newton – Euler formulations – Problems.

UNIT V

General considerations in path description and generation. Trajectory planning and avoidance of obstacles, path planning, Skew motion, joint integrated motion –straight line motion – Robot programming, languages and software packages-description of paths with a robot programming language.

UNIT VI

ROBOT ACTUATORS AND FEED BACK COMPONENTS:

Actuators: Pneumatic, Hydraulic actuators, electric & stepper motors.

Feedback components: position sensors - potentiometers, resolvers, encoders - Velocity sensors.

ROBOT APPLICATIONS IN MANUFACTURING: Material Transfer - Material handling, loading and unloading- Processing - spot and continuous arc welding & spray painting - Assembly and Inspection.

TEXT BOOKS:

- 1. Industrial Robotics / Groover M P /Pearson Edu.
- 2. Robotics and Control / Mittal R K & Nagrath I J / TMH.

REFERENCES:

- 1. Robotics / Fu K S/ McGraw Hill.
- 2. Robotic Engineering / Richard D. Klafter, Prentice Hall
- 3. Robot Analysis and Control / H. Asada and J.J.E. Slotine / BSP Books Pvt.Ltd.
- 4. Introduction to Robotics / John J Craig / Pearson Edu.

Course outcomes:

Upon successful completion of this course you should be able to:

- 1. Identify various robot configuration and components,
- 2. Select appropriate actuators and sensors for a robot based on specific application
- 3. Carry out kinematic and dynamic analysis for simple serial kinematic chains
- 4. Perform trajectory planning for a manipulator by avoiding obstacles.

POWER ELECTRONICS (Open Elective)

Preamble:

The usage of power electronics in day to day life has increased in recent years. It is important for student to understand the fundamental principles behind all these converters. This course covers characteristics of semiconductor devices, ac/dc, dc/dc, ac/ac and dc/ac converters. The importance of using pulse width modulated techniques to obtain high quality power supply (dc/ac converter) is also discussed in detail in this course.

Learning Objectives:

- To study the characteristics of various power semiconductor devices and to design firing circuits for SCR.
- To understand the operation of single phase half wave and full-wave converters
- To understand the operation of different types of DC-DC converters.
- To understand the operation of inverters and application of PWM techniques for voltage control and harmonic mitigation.
- To understand the operation of AC-AC converters and switch mode power supplies operation.

UNIT-I

Power Semi-Conductor Devices

Thyristors–Silicon controlled rectifiers (SCR's) – Characteristics of power MOSFET and power IGBT – Basic theory of operation of SCR–Static characteristics – Turn on and turn off methods–Dynamic characteristics of SCR – Snubber circuit design – Firing circuits for SCR

UNIT-II

AC-DC Single-Phase Converters

Single phase half wave controlled rectifiers - R load and RL load with and without freewheeling diode - Single Phase full wave controlled rectifiers - center tapped configuration and bridge configuration - R load and RL load with and without freewheeling diode - Effect of source inductance in 1-phase fully controlled bridge rectifier.

UNIT-III

DC–DC Converters

Buck Converter operation – Time ratio control and current limit control strategies–Voltage and current waveforms– Derivation of output voltage –Boost converter operation –Voltage and current waveforms–Derivation of output voltage – Buck-Boost converter operation –Voltage and current waveforms – Principle operation of forward and fly back converters

UNIT – IV

DC-AC Converters

Single phase inverters–Unipolar and bipolar switching – Single phase half bridge and full bridge inverters with R and RL loads – PWM techniques– Sine triangular PWM technique– amplitude and frequency modulation Indices – Harmonic analysis.

UNIT – V

AC – AC Single-Phase Converters

Static V-I characteristics of TRIAC and modes of operation – Single phase AC-AC regulator phase angle control and integrated cycle control with R and RL load – For continuous and discontinuous conduction – Principle of operation of Cyclo-Converters

UNIT – VI

Switch Mode Power Supplies

Overview of Switching Power Supplies – Linear Power Supplies – DC to DC converters with electrical isolation – Control of Switch Mode DC Supplies – PWM duty ratio control – Current mode control – Power Supply Protection

Learning Outcomes:

Student should be able to

- Explain the characteristics of various power semiconductor devices and analyse the static and dynamic characteristics of SCR's.
- Design firing circuits for SCR.
- Able to explain the operation of single phase half wave and full–wave converters
- Analyse the operation of different types of DC-DC converters.
- Explain the operation of inverters and application of PWM techniques for voltage control and harmonic mitigation.
- Analyse the operation of AC-AC converters.
- Able to explain switch mode power supplies operation and control

Text Books:

- 1. Power Electronics: Circuits, Devices and Applications by M. H. Rashid, Prentice Hall of India, 2nd edition, 1998
- 2. Power Electronics: Essentials & Applications by L.Umanand, Wiley, Pvt. Limited, India, 2009

Reference Books:

- 1. Power Electronics: converters, applications & design -by Nedmohan, Tore M. Undeland, Robbins by Wiley India Pvt. Ltd.
- 2. Elements of Power Electronics-Philip T.Krein.oxford.
- 3. Power Electronics by P.S.Bhimbra, Khanna Publishers.
- 4. Power Electronics handbook by Muhammad H.Rashid, Elsevier.
- 5. Power Converter Circuits -by William Shepherd, Li zhang, CRC Taylor & Francis Group.

BIO-MEDICAL ENGINEERING (OPEN ELECTIVE)

UNIT-I:

INTRODUCTION TO BIOMEDICAL INSTRUMENTATION: Age of Biomedical Engineering, Development of Biomedical Instrumentation, Man Instrumentation System, Components of the Man-Instrument System, Physiological System of the Body, Problems Encountered in Measuring a Living System, Sources of Bioelectric Potentials, Muscle, Bioelectric Potentials, Sources of Bioelectric Potentials, Resting and Action Potentials, Propagation of Action Potential, Bioelectric Potentials-ECG, EEG and EMG, Envoked Responses.

UNIT-II:

ELECTRODES AND TRANSDUCERS: Introduction, Electrode Theory, Biopotential Electrodes, Examples of Electrodes, Basic Transducer Principles, Biochemical Transducers, The Transducer and Transduction Principles, Active Transducers, Passive Transducers, Transducers for Biomedical Applications, Pulse Sensors, Respiration Sensor, Transducers with Digital Output.

UNIT-III:

CARDIOVASCULAR SYSTEM AND MEASUREMENTS: The Heart and Cardiovascular System, Electro Cardiography, Blood Pressure Measurement, Measurement of Blood Flow and Cardiac Output, Measurement of Heart Sound, Plethysmography.

MEASUREMENTS IN THE RESPIRATORY SYSTEM: The Physiology of The

Respiratory System, Tests and Instrumentation for The Mechanics of Breathing, Respiratory Therapy Equipment.

UNIT-IV:

PATIENT CARE AND MONITORING: Elements of Intensive-Care Monitoring, Patient Monitoring Displays, Diagnosis, Calibration and Repair ability of Patient-Monitoring Equipment, Other Instrumentation for Monitoring Patients, Organization of the Hospital for Patient-Care Monitoring, Pacemakers, Defibrillators, Radio Frequency Applications of Therapeutic use.

THERAPEUTIC AND PROSTHETIC DEVICES: Audiometers and Hearing Aids,

Myoelectric Arm, Laparoscope, Ophthalmology Instruments, Anatomy of Vision, Electrophysiological Tests, Ophthalmoscope, Tonometer for Eye Pressure Measurement, Diathermy, Clinical Laboratory Instruments, Biomaterials, Stimulators.

UNIT-V:

DIAGNOSTIC TECHNIQUES AND BIO-TELEMETRY: Principles of Ultrasonic Measurement, Ultrasonic Imaging, Ultrasonic Applications of Therapeutic Uses, Ultrasonic Diagnosis, X-Ray and Radio-Isotope Instrumentations, CAT Scan, Emission Computerized Tomography, MRI, Introduction to Biotelemetry, Physiological Parameters Adaptable to Biotelemetry, The Components of Biotelemetry System, Implantable Units, Telemetry for ECG Measurements during Exercise, Telemetry for Emergency Patient Monitoring

UNIT-VI:

MONITORS, RECORDERS AND SHOCK HAZARDS: Biopotential Amplifiers, Monitors, Recorders, Shock Hazards and Prevention, Physiological Effects and Electrical Current, Shock Hazards from Electrical Equipment, Methods of Accident Prevention, Isolated Power Distribution System.

Text Books:

- 1. "Bio-Medical Electronics and Instrumentation", Onkar N. Pandey, Rakesh Kumar, Katson Books.
- 2. "Bio-Medical Instrumentation", Cromewell, Wiebell, Pfeiffer

References:

- 1. "Introduction to Bio-Medical Equipment Technology", 4th Edition, Joseph J. Carr, John M. Brown, Pearson Publications.
- 2. "Hand Book of Bio-Medical Instrumentation", Khandapur. McGrawHill

ARTIFICIAL NEURAL NETWORKS

OPEN ELECTIVE

Course Objectives:

- 1. To Introduce the concept of Artificial Neural Networks , Characteristics, Models of Neuron, Learning Rules, Learning Methods, Stability and Convergence
- 2. To study the basics of Pattern Recognition and Feed forward Neural Networks
- 3. To study the basics of Feedback neural networks and Boltzmann machine
- 4. To introduce the Analysis of Feedback layer for different output functions, Pattern Clustering and Mapping networks
- 5. To study the Stability, Plasticity, Neocognitron and Different applications of Neural Networks

UNIT-I : Basics of Artificial Neural Networks

Introduction: Biological Neural Networks, Characteristics of Neural Networks, Models of Neuron, Topology, Basic Learning Rules

Activation and Synaptic Dynamics: Activation Dynamic Models, Synaptic Dynamic Models, Learning Methods, Stability & Convergence, Recall in Neural Networks

UNIT-II: Functional Units of ANN for Pattern Recognition Tasks: Pattern Recognition problem Basic Fundamental Units, Pattern Recognition Tasks by the Functional Units

Feed forward Neural Networks: Analysis of Pattern Association Networks, Analysis of Pattern Classification Networks, Analysis of Pattern Mapping Networks

UNIT-III:

Feedback Neural Networks: Analysis of linear auto adaptive feed forward networks, Analysis of pattern storage Networks, Stochastic Networks & Stimulated Annealing, Boltzmann machine

UNIT-IV:

Competitive Learning Neural Networks: Components of a Competitive Learning Network, Analysis of Feedback layer for Different Output Functions, Analysis of Pattern Clustering Networks and Analysis of Feature Mapping Network

UNIT-V:

Architectures for Complex Pattern Recognition Tasks: Associative memory, Pattern mapping Stability – Plasticity dilemma: ART, temporal patterns, Pattern visibility: Neocognitron

UNIT-VI:

Applications of Neural Networks: Pattern classification, Associative memories, Optimization, Applications in Image Processing, Applications in decision making

Text Book

1. B.Yagnanarayana"Artificial Neural Networks", PHI

Reference Book

- 1. Laurene Fausett ,"Fundamentals of Neural Networks", Pearson Education
- 2. Simon Haykin , "Neural Networks", Second Edition

Course Outcomes

- 1. This Course introduces Artificial Neural Networks and Learning Rules and Learning methods
- 2. Feed forward and Feedback Neural Networks are introduced
- 3. Applications of Neural Networks in different areas are introduced

III Year - II Semester	L	Т	Р	С
m rear - m semester	0	0	3	2

MICROPROCESSORS AND MICROCONTROLLERS LAB

LIST OF EXPERIMENTS

<u>PART-A:</u> (Minimum of 5 Experiments has to be performed)

8086 Assembly Language Programming using Assembler Directives

- 15. Sorting.
- 16. Multibyte addition/subtraction
- 17. Sum of squares/cubes of a given n-numbers
- 18. Addition of n-BCD numbers
- 19. Factorial of given n-numbers
- 20. Multiplication and Division operations
- 21. Stack operations
- 22. BCD to Seven segment display codes

<u>PART-B</u>: (Minimum of 3 Experiments has to be performed)

8086 Interfacing

- 1. Hardware/Software Interrupt Application
- 2. A/D Interface through Intel 8255
- 3. D/A Interface through Intel 8255
- 4. Keyboard and Display Interface through Intel 8279
- 5. Generation of waveforms using Intel 8253/8254

<u>PART-C</u>: (Minimum of 3 Experiments has to be performed)

8051 Assembly Language Programs

- 1. Finding number of 1's and number of 0's in a given 8-bit number
- 2. Addition of even numbers from a given array
- 3. Ascending / Descending order
- 4. Average of n-numbers

<u>PART-D</u>: (Minimum of 3 Experiments has to be performed)

8051 Interfacing

- 1. Switches and LEDs
- 2. 7-Segment display (multiplexed)
- 3. Stepper Motor Interface
- 4. Traffic Light Controller

Equipment Required:

- 1.
- Regulated Power supplies Analog/Digital Storage Oscilloscopes 8086 Microprocessor kits 2.
- 3.
- 8051 microcontroller kits 4.
- 5. ADC module
- 6. DAC module
- 7. Stepper motor module
- Keyboard module
 LED, 7-Segemt Units
 Digital Multimeters
- 11. ROM/RAM Interface module
- 12. Bread Board etc.

III Year - II Semester	L	Т	Р	С
	0	0	3	2

VLSI LABORATORY

<u>Note:</u> The students are required to design the schematic diagrams using CMOS logic and to draw the layout diagrams to perform the following experiments using 130nm technology with the Industry standard EDA Tools.

List of Experiments:

- i. Design and Implementation of an Universal Gates
- ii. Design and Implementation of an Inverter
- iii. Design and Implementation of Full Adder
- iv. Design and Implementation of Full Subtractor
- v. Design and Implementation of Decoder
- vi. Design and Implementation of RS-Latch
- vii. Design and Implementation of D-Latch
- viii. Design and Implementation asynchronous counter
- ix. Design and Implementation of static RAM cell
- x. Design and Implementation of 8 bit DAC using R-2R latter network

Software Required:

- i. Mentor Graphics Software / Equivalent Industry Standard Software.
- ii. Personal computer system with necessary software to run the programs and to implement.

III Veen II Comester	L	Т	Р	С
III Year - II Semester	0	0	3	2

DIGITAL COMMUNICATIONS LAB

- 1. Time division multiplexing.
- 2. Pulse code modulation.
- 3. Differential pulse code modulation.
- 4. Delta modulation.
- 5. Frequency shift keying.
- 6. Phase shift keying .
 7. Differential phase shift keying.
- 8. Companding
- 9. Source Encoder and Decoder
- 10. Linear Block Code-Encoder and Decoder
- 11. Binary Cyclic Code Encoder and Decoder
- 12. Convolution Code Encoder and Decoder

Equipment required for Laboratories:

- 1. RPS 0 30 V
- 2. CRO 0 20 M Hz.
- 3. Function Generators -0 1 M Hz
- 4. RF Generators 0 1000 M Hz./0 100 M Hz.
- 5. Multimeters
- 6. Lab Experimental kits for Digital Communication
- 7. Components

III Year - II Semester	L	Т	Р	С
	0	2	0	0

INTELLECTUAL PROPERTY RIGHTS AND PATENTS

UNIT I: Introduction to Intellectual Property Rights (IPR)

Concept of Property - Introduction to IPR – International Instruments and IPR - WIPO - TRIPS – WTO -Laws Relating to IPR - IPR Tool Kit - Protection and Regulation - Copyrights and Neighboring Rights – Industrial Property – Patents - Agencies for IPR Registration – Traditional Knowledge –Emerging Areas of IPR - Layout Designs and Integrated Circuits – Use and Misuse of Intellectual Property Rights.

UNIT II: Copyrights and Neighboring Rights

Introduction to Copyrights – Principles of Copyright Protection – Law Relating to Copyrights - Subject Matters of Copyright – Copyright Ownership – Transfer and Duration – Right to Prepare Derivative Works – Rights of Distribution – Rights of Performers – Copyright Registration – Limitations – Infringement of Copyright – Relief and Remedy – Case Law - Semiconductor Chip Protection Act.

UNIT III: Patents

Introduction to Patents - Laws Relating to Patents in India – Patent Requirements – Product Patent and Process Patent - Patent Search - Patent Registration and Granting of Patent - Exclusive Rights – Limitations - Ownership and Transfer — Revocation of Patent – Patent Appellate Board - Infringement of Patent – Double Patenting — Patent Cooperation Treaty – New developments in Patents – Software Protection and Computer related Innovations.

UNIT IV: Trademarks

Introduction to Trademarks – Laws Relating to Trademarks – Functions of Trademark – Distinction between Trademark and Property Mark – Marks Covered under Trademark Law - Trade Mark Registration – Trade Mark Maintenance – Transfer of rights - Deceptive Similarities - Likelihood of Confusion - Dilution of Ownership – Trademarks Claims and Infringement – Remedies – Passing Off Action.

UNIT V: Trade Secrets

Introduction to Trade Secrets – General Principles - Laws Relating to Trade Secrets - Maintaining Trade Secret – Physical Security – Employee Access Limitation – Employee Confidentiality Agreements – Breach of Contract – Law of Unfair Competition – Trade Secret Litigation – Applying State Law.

UNIT VI: Cyber Law and Cyber Crime

Introduction to Cyber Law – Information Technology Act 2000 - Protection of Online and Computer Transactions - E-commerce - Data Security – Authentication and Confidentiality - Privacy - Digital Signatures – Certifying Authorities - Cyber Crimes - Prevention and Punishment – Liability of Network Providers.

• Relevant Cases Shall be dealt where ever necessary.

References:

- 1. Intellectual Property Rights (Patents & Cyber Law), Dr. A. Srinivas. Oxford University Press, New Delhi.
- 2. Deborah E.Bouchoux: Intellectual Property, Cengage Learning, New Delhi.
- 3. PrabhuddhaGanguli: Intellectual Property Rights, Tata Mc-Graw -Hill, New Delhi
- 4. Richard Stim: Intellectual Property, Cengage Learning, New Delhi.
- 5. Kompal Bansal & Parishit Bansal Fundamentals of IPR for Engineers, B. S. Publications (Press).
- 6. Cyber Law Texts & Cases, South-Western's Special Topics Collections.
- 7. R.Radha Krishnan, S.Balasubramanian: Intellectual Property Rights, Excel Books. New Delhi.
- 8. M.Ashok Kumar and MohdIqbal Ali: Intellectual Property Rights, Serials Pub.

IV Year - I Semester	L	Т	Р	С	
		4	0	0	3
	RADAR SYSTEMS				

OBJECTIVES

The student will be introduced to:

- 1. The Basic Principle of radar and radar range equation.
- 2. Different types of radars; CW, FM-CW, MTI and pulse Doppler radars.
- 3. Understand the different tracking techniques for radar.
- 4. Understand the characteristics of a matched filter receiver and its performance.
- 5. Understand the different types of displays, duplexers and antennas used in radar systems.

UNIT-I:

Basics of Radar : Introduction, Maximum Unambiguous Range, simple Radar range Equation, Radar Block Diagram and Operation, Radar Frequencies and Applications. Prediction of Range Performance, Minimum Detectable Signal, Receiver Noise, Illustrative Problems.

Radar Equation : Modified Radar Range Equation, SNR, probability of detection, probability of False Alarm, Integration of Radar Pulses, Radar Cross Section of Targets (simple targets - sphere, cone-sphere), Creeping Wave, Transmitter Power, PRF and Range Ambiguities, System Losses (qualitative treatment), Illustrative Problems.

UNIT-II:

CW and Frequency Modulated Radar : Doppler Effect, CW Radar – Block Diagram, Isolation between Transmitter and Receiver, Non-zero IF Receiver, Receiver Bandwidth Requirements, Applications of CW radar. Illustrative Problems

FM-CW Radar: Range and Doppler Measurement, Block Diagram and Characteristics, FM-CW altimeter, Multiple Frequency CW Radar.

UNIT-III:

MTI and Pulse Doppler Radar: Introduction, Principle, MTI Radar with - Power Amplifier Transmitter and Power Oscillator Transmitter, Delay Line Cancellers – Filter Characteristics, Blind Speeds, Double Cancellation, Nth Cancellation Staggered PRFs. Range Gated Doppler Filters. MTI Radar Parameters, Limitations to MTI Performance, MTI versus Pulse Doppler Radar.

UNIT –IV:

Tracking Radar: Tracking with Radar, Sequential Lobing, Conical Scan, Mono pulse Tracking Radar – Amplitude Comparison Mono pulse (one- and two- coordinates), Phase Comparison Mono pulse, Tracking in Range, Acquisition and Scanning Patterns, Comparison of Trackers.

UNIT –V:

Detection of Radar Signals in Noise : Introduction, Matched Filter Receiver – Response Characteristics and Derivation, Correlation detection and Cross-correlation Receiver, Efficiency of Non-matched Filters, Matched Filter with Non-white Noise, Noise Figure and Noise Temperature.

UNIT –VI:

Radar Receivers –Displays – types. Duplexers – Branch type and Balanced type, Circulators as Duplexers. Introduction to Phased Array Antennas – Basic Concepts, Radiation Pattern, Beam Steering and Beam Width changes, Series versus parallel feeds, Applications, Advantages and Limitations. Radomes.

TEXT BOOKS:

1. Introduction to Radar Systems – Merrill I. Skolnik, TMH Special Indian Edition, 2nd Ed., 2007.

REFERENCE BOOKS:

- 1. Introduction to Radar Systems, 3rd edition M.I. Skolnik, TMH Ed., 2005
- 2. Radar: Principles, Technology, Applications Byron Edde, Pearson Education, 2004.
- 3. Radar Principles Peebles, Jr., P.Z., Wiley, New York, 1998.
- 4. Principles of Modern Radar: Basic Principles Mark A. Richards, James A. Scheer, William A. Holm, Yesdee,
- 5. Radar Engineering GSN Raju, IK International.

OUTCOMES

After going through this course the student will be able to:

- 1. Derive the radar range equation and to solve some analytical problems.
- 2. Understand the different types of radars and its applications.
- 3. Understand the concept of tracking and different tracking techniques.
- 4. Understand the various components of radar receiver and its performanc.

IV Year - I Semester			Т		_	
	4	0	0	3		

DIGITAL IMAGE PROCESSING

UNIT-1

Introduction: Introduction to Image Processing, Fundamental steps in digital image processing, components of an image processing system, image sensing and acquisition, image sampling and quantization, some basic relationships between pixels, an introduction to the mathematical tools used in digital image processing.

Image Transforms: Need for image transforms, Discrete Fourier transform (DFT) of one variable, Extension to functions of two variables, some properties of the 2-D Discrete Fourier transform, Importance of Phase, Walsh Transform. Hadamard transform, Haar Transform, Slant transform, Discrete Cosine transform, KL Transform, SVD and Radon Transform, Comparison of different image transforms

UNIT-2

Intensity Transformations and Spatial Filtering: Background, Some basic intensity transformation functions, histogram processing, fundamentals of spatial filtering, smoothing spatial filters, sharpening spatial filters, Combining spatial enhancement methods

Filtering in the Frequency Domain: Preliminary concepts, The Basics of filtering in the frequency domain, image smoothing using frequency domain filters, Image Sharpening using frequency domain filters, Selective filtering.

UNIT-3

Image Restoration and Reconstruction: A model of the image degradation / Restoration process, Noise models, restoration in the presence of noise only-Spatial Filtering, Periodic Noise Reduction by frequency domain filtering, Linear, Position –Invariant Degradations, Estimating the degradation function, Inverse filtering, Minimum mean square error (Wiener) filtering, constrained least squares filtering ,geometric mean filter ,image reconstruction from projections.

UNIT-4

Image compression: Fundamentals, Basic compression methods: Huffman coding, Golomb coding, Arithmetic coding, LZW coding, Run-Length coding, Symbol-Based coding, Bit-Plane coding, Block Transform coding, Predictive coding

Wavelets and Multiresolution Processing: Image pyramids, subband coding, Multiresolution expansions, wavelet transforms in one dimensions & two dimensions, Wavelet coding.

UNIT-5

Image segmentation: Fundamentals, point, line, edge detection, thresholding, region –based segmentation.

Morphological Image Processing: Preliminaries, Erosion and dilation, opening and closing, basic morphological algorithms for boundary extraction, thinning, gray-scale morphology, Segmentation using morphological watersheds.

UNIT-6

Color image processing: color fundamentals, color models, pseudo color image processing, basics of full color image processing, color transformations, smoothing and sharpening. Image segmentation based on color, noise in color images, color image compression.

Text Books

- 1. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd edition, Prentice Hall, 2008.
- 2. Jayaraman, S. Esakkirajan, and T. Veerakumar," Digital Image Processing", Tata McGraw-Hill Education, 2011.

Reference Books

- 1. Anil K.Jain, "Fundamentals of Digital Image Processing", Prentice Hall of India, 9th Edition, Indian Reprint, 2002.
- 2. B.Chanda, D.Dutta Majumder, "Digital Image Processing and Analysis", PHI, 2009.

Course Objectives:

Students undergoing this course are expected to:

- 1. Familiarize with basic concepts of digital image processing and different image transforms
- 2. Learn various image processing techniques like image enhancement, restoration, segmentation and compression
- 3. Understand color fundamentals and different color models
- 4. Understand wavelets and morphological image processing

Course Outcomes:

After undergoing the course students will be able to

- 1. Perform image manipulations and different digital image processing techniques
- 2. Perform basic operations like Enhancement, segmentation, compression, Image transforms and restoration techniques on image.
- 3. Analyze pseudo and fullcolor image processing techniques.
- 4. Apply various morphological operators on images

IV Year - I Semester	\mathbf{L}	Т	Р	С	
IV Year - I Semester		4	0	0	3
	COMPUTER NETWORKS				

OBJECTIVES:

- Understand state-of-the-art in network protocols, architectures, and applications.
- Process of networking research
- Constraints and thought processes for networking research
- Problem Formulation—Approach—Analysis—

UNIT – I

Introduction: Network Topologies WAN, LAN, MAN. Reference models- The OSI Reference Model- the TCP/IP Reference Model - A Comparison of the OSI and TCP/IP Reference Models

UNIT – II

Physical Layer – Fourier Analysis – Bandwidth Limited Signals – The Maximum Data Rate of a Channel - Guided Transmission Media, Digital Modulation and Multiplexing: Frequency Division Multiplexing, Time Division Multiplexing, Code Division Multiplexing

Data Link Layer Design Issues, Error Detection and Correction, Elementary Data Link Protocols, Sliding Window Protocols

UNIT – III

The Data Link Layer - Services Provided to the Network Layer – Framing – Error Control – Flow Control, Error Detection and Correction – Error-Correcting Codes – Error Detecting Codes, Elementary Data Link Protocols- A Utopian Simplex Protocol-A Simplex Stop and Wait Protocol for an Error free channel-A Simplex Stop and Wait Protocol for a Noisy Channel, Sliding Window Protocols-A One Bit Sliding Window Protocol-A Protocol Using Go-Back-N- A Protocol Using Selective Repeat

UNIT – IV

The Medium Access Control Sublayer-The Channel Allocation Problem-Static Channel Allocation-Assumptions for Dynamic Channel Allocation, Multiple Access Protocols-Aloha-Carrier Sense Multiple Multiple Access Protocols-Collision-Free Protocols-Limited Contention Protocols-Wireless LAN Protocols, Ethernet-Classic Ethernet Physical Layer-Classic Ethernet MAC Sublayer Protocol-Ethernet Performance-Fast Ethernet Gigabit Ethernet-10-Gigabit Ethernet-Retrospective on Ethernet, Wireless Lans-The 802.11 Architecture and Protocol Stack-The 802.11 Physical Layer-The802.11 MAC Sublayer Protocol-The 805.11 Frame Structure-Services

UNIT – V

Design Issues-The Network Layer Design Issues – Store and Forward Packet Switching-Services Provided to the Transport layer- Implementation of Connectionless Service-Implementation of Connection Oriented Service-Comparison of Virtual Circuit and Datagram Networks, Routing Algorithms-The Optimality principle-Shortest path Algorithm, Congestion Control Algorithms-Approaches to Congestion Control-Traffic Aware Routing-Admission Control-Traffic Throttling-Load Shedding.

UNIT – VI

Transport Layer – The Internet Transport Protocols: Udp, the Internet Transport Protocols: Tcp Application Layer – The Domain Name System: The DNS Name Space, Resource Records, Name Servers, Electronic Mail: Architecture and Services, The User Agent, Message Formats, Message Transfer, Final Delivery

OUTCOMES:

- Understand OSI and TCP/IP models
- Analyze MAC layer protocols and LAN technologies
- 3 .Design applications using internet protocols
- 4 .Understand routing and congestion control algorithms
- 5 .Understand how internet works

TEXT BOOKS:

- 1. Computer Networks, Tanenbaum and David J Wetherall, 5th Edition, Pearson Edu, 2010
- 2. Computer Networks: A Top Down Approach, Behrouz A. Forouzan, FirouzMosharraf, McGraw Hill Education

REFERENCE BOOKS:

1. Larry L. Peterson and Bruce S. Davie, "Computer Networks - A Systems Approach" (5th ed), Morgan Kaufmann/ Elsevier, 2011

IV Year - I Semester	L	Т	Р	С
IV Ieal - I Semester	4	0	0	3

OPTICAL COMMUNICATIONS

OBJECTIVES

The student will be introduced to the functionality of each of the components that comprise a fiber-optic communication system

- the properties of optical fiber that affect the performance of a communication link and types of fiber materials with their properties and the losses occur in fibers.
- the principles of single and multi-mode optical fibers and their characteristics
- working of semiconductor lasers, and differentiate between direct modulation and external electro-optic modulation.

• Analyze the operation of LEDs, laser diodes, and PIN photo detectors (spectral

properties, bandwidth, and circuits) and apply in optical systems.

- Analyze and design optical communication and fiber optic sensor systems.
- the models of analog and digital receivers.

UNIT I

Overview of optical fiber communication - Historical development, The general system, advantages of optical fiber communications. Optical fiber wave guides- Introduction, Ray theory transmission, Total Internal Reflection, Acceptance angle, Numerical Aperture, Skew rays, Cylindrical fibers- Modes, V-number, Mode coupling, Step Index fibers, Graded Index fibers, Single mode fibers- Cut off wavelength, Mode Field Diameter, Effective Refractive Index, Related problems.

UNIT II

Fiber materials:- Glass, Halide, Active glass, Chalgenide glass, Plastic optical fibers. Signal distortion in optical fibers-Attenuation, Absorption, Scattering and Bending losses, Core and Cladding losses, Information capacity determination, Group delay, Types of Dispersion:- Material dispersion, Wave-guide dispersion, Polarization-Mode dispersion, Intermodal dispersion, Pulse broadening in Graded index fiber, Related problems.

UNIT III

. Optical fiber Connectors-Connector types, Single mode fiber connectors, Connector return loss, Fiber Splicing Splicing techniques, Splicing single mode fibers, Fiber alignment and joint loss- Multimode fiber joints, single mode fiber joints.

UNIT IV

Optical sources- LEDs, Structures, Materials, Quantum efficiency, Power, Modulation, Power bandwidth product. Injection Laser Diodes- Modes, Threshold conditions, External quantum efficiency, Laser diode rate equations, Resonant frequencies, Reliability of LED&ILD, Optical detectors- Physical principles of PIN and APD, Detector response time, Temperature effect on Avalanche gain, Comparison of Photo detectors, Related problems.

UNIT V

Source to fiber power launching - Output patterns, Power coupling, Power launching, Equilibrium Numerical Aperture, Laser diode to fiber coupling, Optical receiver operation- Fundamental receiver operation, Digital signal transmission, error sources, Receiver configuration, Digital receiver performance, Probability of Error, Quantum limit, Analog receivers.

UNIT VI

Optical system design - Point-to- point links- Component choice and considerations, Link power budget, Rise time budget with examples, Line coding in Optical links, WDM, Necessity, Principles, Measurement of Attenuation and Dispersion, Eye pattern.

TEXT BOOKS :

- 1. Optical Fiber Communications Gerd Keiser, Mc Graw-Hill International edition, 3rd Edition, 2000.
- 2. Optical Fiber Communications John M. Senior, PHI, 2nd Edition, 2002.

RERFERENCES :

- 1. Fiber Optic Communications D.K. Mynbaev, S.C. Gupta and Lowell L. Scheiner, Pearson Education, 2005.
- 2. Text Book on Optical Fiber Communication and its Applications S.C.Gupta, PHI, 2005.
- 3. Fiber Optic Communication Systems Govind P. Agarwal, John Wiley, 3rd Ediition, 2004.
- 4. Fiber Optic Communications Joseph C. Palais, 4th Edition, Pearson Education, 2004.

OUTCOMES

After going through this course the student will be able to

- Choose necessary components required in modern optical communications systems .
- Design and build optical fiber experiments in the laboratory, and learn how to calculate electromagnetic modes in waveguides, the amount of light lost going through an optical system, dispersion of optical fibers.
- Use different types of photo detectors and optical test equipment to analyze optical fiber and light wave systems.
- Choose the optical cables for better communication with minimum losses

Design, build, and demonstrate optical fiber experiments in the laboratory.

IV Year - I Semester	L	Т	Р	С
Iv Tear - I Semester	4	0	0	3

TELEVISION ENGINEERING (Elective- I)

UNIT I

INTRODUCTION: TV transmitter and receivers, synchronization. Television Pictures: Geometric form and aspect ratio, image continuity, interlaced scanning, picture resolution, Composite video signal: Horizontal and vertical sync, scanning sequence, Colour signal generation and Encoding: Perception of brightness and colours, additive colour mixing, video signals for colours, luminance signal, colour difference signals, encoding of colour difference signals, formation of chrominance signals, PAL encoder.

UNIT II

TV SIGNAL TRANSMISSION AND PROPAGATION: Picture signal transmission, positive and negative modulation, VSB transmission, sound signal transmission, standard channel BW, TV transmitter, TV signal propagation, interference, TV broadcast channels.

MONOCHROME TV RECEIVER: RF tuner, IF subsystem, video amplifier, sound section, sync separation and processing, deflection circuits, scanning circuits.

PAL–D colour receiver: Electron tuners, IF subsystem, Y-signal channel, chroma decoder, separation of U & V Colour phasors, synchronous demodulators, subcarrier generation, raster circuits. **UNIT III**

VISION IF SUBSYSTEM: AGC, noise cancellation, video and intercarrier sound signal detection, Colour receiver IF subsystem, Receiver sound system: FM detection, FM Sound detectors, typical applications.TV Receiver Tuners: Tuner operation, VHF and UHF tuners.

COLOUR SIGNAL DECODING:PAL-D decoder, chroma signal amplifiers, separation of U and V signals, Color burst separation, Burst phase discriminator, Reference oscillator, Indent and color killer circuits, RO phase shift and 180 degrees PAL-SWITCH circuitry, U & V demodulators, Colour signal mixing.

UNIT-IV

HISTORY OF HDTV: Analog and Digital TV Compared, Going HD, Broadcast Engineering and Information Technology, The Road to HDTV, The Grand Alliance, A DTV Standard at Last, Producing HDTV, HD Goes Coast-to-Coast, DTV Conversion.

COMPRESSION TECHNIQUES: Compression, MPEG-2 Video Compression, MPEG-4, H.264, Motion – JPEG (M-JPEG) compression, Audio Compression, Compressed Data Streams, Packetized Transport. **UNIT V**

DTV TRANSMITTER AND RECIEVER: Engineering Basics, Presentation, Transmission, Reception and Demodulation, Transport Stream Demultiplexing, Decoding and Decompression, Program Assembly and Presentation, Receiver Issues, Presentation Concerns.

HDTV AND DTV STANDARDS: Standards Bodies, The ATSC Standards, SMPTE Standards, The Audio Engineering Society, Cable DTV Standards, Institute of Electronic and Electrical Engineers, The Consumer Electronics Association, Other Societies and Organizations.

UNIT VI

EMERGING TECHNOLOGIES AND STANDARDS: Technology and Standards Development, Presentation, Delivery and Distribution, MPEG and Metadata, Enhanced, Interactive and Personalized, Virtual Product Placement, Multiplatform Emergency Alert System.

TEXT BOOKS

- 1. Modern Television Practice Principles, Technology and Service R.R.Gulati, New Age International Publication, 2002
- 2. Television and Video Engineering A.M.Dhake, 2nd Edition,
- 3. "HDTV and the Transition to Digital Broadcasting: Understanding New Television Technologies" by Philip J. Cianci, Focal Press, 2007.
- 4. "Digital Video and HDTV Algorithms and Interfaces" by Charles Poynton, Morgan Kaufman publishers, 2007.

REFERENCES

- 1. Basic Television and Video Systems B.Grob and C.E.Herndon, McGrawHill, 1999
- 2. "Newnes Guide to Television and Video Technology" by Ibrahim.K.F, Newnes Publishers, 4th edition, 2007.
- 3. "H.264 and MPEG-4 and Video compression video coding for Next-generation Multimedia" by Iain E. G. Richardson, John Wiley & Sons Ltd., 2003.

۰۰.

ELECTRONIC SWITCHING SYSTEMS (Elective- I)

OBJECTIVES :

The student will

- Understand the means of measuring traffic.
- Understand the implication of the traffic level on system design.

UNIT -I:

Introduction: Evolution of Telecommunications, Simple Telephone Communication, Basics of Switching System, Manual Switching System, Major Telecommunication Networks.

Crossbar Switching: Principles of Common Control, Touch Tone Dial Telephone, Principles of Crossbar Switching, Crossbar Switch Configurations, Cross point Technology, Crossbar Exchange Organization.

UNIT -II:

Electronic Space Division Switching: Stored Program Control, Centralized SPC: Stand by mode, Synchronous duplex mode, Distributed SPC, Software Architecture, Application Software, Enhanced Services, Two-Stage Networks, Three-Stage Networks, n- Stage Networks.

UNIT -III

Time Division Switching: Basic Time Division Space Switching, Basic Time Division Time Switching, Generalised time division Space switch, Basic Time division time switching: modes of operation, simple problems, Time Multiplexed Space Switching, Time Multiplexed Time division space Switch, Time Multiplexed Time Switching, Combination Switching: Time Space (TS) Switching, Space-time (ST) Switching, Three-Stage Combination Switching, n- Stage Combination Switching.

UNIT IV

Telephone Networks: Subscriber Loop System, Switching Hierarchy and Routing, Transmission Plan, Transmission Systems, Numbering Plan, Charging Plan, Signaling Techniques, In-channel Signaling, Common Channel Signaling, CCITT Signaling System no.6, CCITT Signaling System no.7, **Packet Switching:** Statistical Multiplexing, Local- Area and Wide- Area Networks, Large-scale Networks, Broadband Networks.

UNIT -V:

Switching Networks: Single- Stage Networks, Grading, Link Systems, Grades of service of link systems, Application of Graph Theory to link Systems, Use of Expansion, Call Packing,

Rearrange-able Networks, Strict- Sense non-blocking Networks, Sectionalized Switching Networks

Telecommunications Traffic: The Unit of Traffic, Congestion, Traffic Measurement, A Mathematical Model, Lost-call Systems, Queuing Systems. Problems

UNIT -VI:

Integrated Services Digital Network: Motivation for ISDN, New Services, Network and Protocol Architecture, Transmission Channels, User- Network Interfaces, Signaling, Numbering and Addressing, Service Characterization, Interworking, ISDN Standards, Expert Systems in ISDN, Broadband ISDN, Voice Data Integration.

TEXT BOOKS:

1. Telecommunication Switching Systems and Networks- Thiagarajan Viswanathan, 2000, PHI.

2. Telecommunications Switching, Traffic and Networks- J. E. Flood, 2006, Pearson Education.

REFERENCES:

- 1. Digital Telephony- J. Bellamy, 2nd Edition, 2001, John Wiley.
- 2. Data Communications and Networks- Achyut S. Godbole, 2004, TMH.
- 3. Principles of Communication Ststems- H. Taub & D. Schilling, 2nd Edition, 2003, TMH.
- 4. Data Communication & Networking- B. A. Forouzan, 3rd Edition, 2004, TMH.
- 5. Telecommunication System Engineering Roger L. Freeman, 4th Ed., Wiley-Inter Science, John Wiley & Sons, 2004.

Outcomes

The student will be able to

- Evaluate the time and space parameters of a switched signal
- Establish the digital signal path in time and space, between two terminals
- Evaluate the inherent facilities within the system to test some of the SLIC, CODEC and digital switch functions.
- Investigate the traffic capacity of the system.
- Evaluate methods of collecting traffic data.
- Evaluate the method of interconnecting two separate digital switches.

SYSTEM DESIGN THROUGH VERILOG (Elective- I)

UNIT-I

INTRODUCTION TO VERILOG:

Verilog as HDL, Levels of design description, concurrency, simulation and synthesis, functional verification, system tasks, programming language interface(PLI), module, simulation and synthesis tools, test benches.

LANGUAGE CONSTRUCTS AND CONVENTIONS:

Introduction, keywords, identifiers, whitespace characters, comments, numbers, strings, logic values, data types, scalars and vectors, parameters, memory, operators, system tasks.

UNIT-II

GATE LEVEL MODELLING:

Introduction, AND gate primitive, module structure, other gate primitives, illustrative examples, tristate gates, array of instances of primitives, design of Flip flops with gate primitives, delays, strengths and contention resolution, net types, design of basic circuits.

UNIT-III

BEHAVIORAL MODELLING:

Introduction, operations and assignments, functional Bifurcation, initial construct, always construct, examples, assignments with delays, wait construct, multiple always blocks, designs at behavioral level, blocking and nonblocking assignments, the case statement, simulation flow, if and if else constructs, assign-De assign construct, repeat construct, FOR loop, the disable construct, While loop, Forever loop, parallel blocks, force-release construct, event.

UNIT-IV

DATAFLOW LEVEL AND SWITCH LEVEL MODELLING:

Introduction, continuous assignment structures, delays and continuous assignments, assignment to vectors, basic transistor switches, CMOS switch, Bidirectional gates and time delays with switch primitives, instantiations with strengths and delays, strength contention with trireg nets.

UNIT-V

SYNTHSIS OF COMBINATIONAL AND SEQUENTIAL LOGIC USING VERILOG: Synthesis of combinational logic: Net list of structured primitives, a set of continuous assignment statements and level sensitive cyclic behavior with examples, Synthesis of priority structures, Exploiting logic don't care conditions. Synthesis of sequential logic with latches: Accidental synthesis of latches and Intentional synthesis of latches, Synthesis of sequential logic with flip-flops, Synthesis of explicit state machines.

UNIT-VI

VERILOG MODELS:

Static RAM Memory, A simplified 486 Bus Model, Interfacing Memory to a Microprocessor Bus, UART Design and Design of Microcontroller CPU.

TEXT BOOKS:

- 1. Design through Verilog HDL T.R. Padmanabhan and B. Bala Tripura Sundari, WSE, IEEE Press, 2004.
- 2. Advanced Digital Design with Verilog HDL Michael D. Ciletti, PHI, 2005.

REFERENCES:

- 1. Fundamentals of Logic Design with Verilog Stephen. Brown and Zvonko Vranesic, TMH, 2005.
- 2. A Verilog Primier J. Bhasker, BSP, 2003.

L	Т	Р	С
4	0	0	3

EMBEDDED SYSTEMS ELECTIVE - II

OBJECTIVES:

The main objectives of this course are given below:

- The basic concepts of an embedded system are introduced.
- The various elements of embedded hardware and their design principles are explained.
- Different steps involved in the design and development of firmware for embedded systems is elaborated.
- Internals of Real-Time operating system and the fundamentals of RTOS based embedded firmware design is discussed.
- Fundamental issues in hardware software co-design were presented and explained.
- Familiarise with the different IDEs for firmware development for different family of processors/controllers and embedded operating systems.
- Embedded system implementation and testing tools are introduced and discussed.

Outcomes:

At the end of this course the student can able to:

- Understand the basic concepts of an embedded system and able to know an embedded system design approach to perform a specific function.
- The hardware components required for an embedded system and the design approach of an embedded hardware.
- The various embedded firmware design approaches on embedded environment.
- Understand how to integrate hardware and firmware of an embedded system using real time operating system.

Syllabus

UNIT-I

INTRODUCTION: Embedded system-Definition, history of embedded systems, classification of embedded systems, major application areas of embedded systems, purpose of embedded systems, the typical embedded system-core of the embedded system, Memory, Sensors and Actuators, Communication Interface, Embedded firmware, Characteristics of an embedded system, Quality attributes of embedded systems, Application-specific and Domain-Specific examples of an embedded system.

UNIT-II

EMBEDDED HARDWARE DESIGN: Analog and digital electronic components, I/O types and examples, Serial communication devices, Parallel device ports, Wireless devices, Timer and counting devices, Watchdog timer, Real time clock.

UNIT-III

EMBEDDED FIRMWARE DESIGN: Embedded Firmware design approaches, Embedded Firmware development languages, ISR concept, Interrupt sources, Interrupt servicing mechanism, Multiple interrupts, DMA, Device driver programming, Concepts of C versus Embedded C and Compiler versus Cross-compiler.

UNIT-IV

REAL TIME OPERATING SYSTEM: Operating system basics, Types of operating systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Task Scheduling, Threads, Processes and Scheduling, Task communication, Task synchronisation, Device Drivers.

HARDWARE SOFTWARE CO-DESIGN: Fundamental Issues in Hardware Software Co-Design, Computational models in embedded design, Hardware software Trade-offs, Integration of Hardware and Firmware, ICE.

UNIT-V

EMBEDDED SYSTEM DEVELOPMENT: The integrated development environment, Types of files generated on cross-compilation, Deassembler/Decompiler, Simulators, Emulators and Debugging, Target hardware debugging, Boundary Scan, Embedded Software development process and tools.

UNIT-VI

EMBEDDED SYSTEM IMPLEMENTATION AND TESTING: The main software utility tool, CAD and the hardware, Translation tools-Pre-processors, Interpreters, Compilers and Linkers, Debugging tools, Quality assurance and testing of the design, Testing on host machine, Simulators, Laboratory Tools.

Text Books:

- 1. Embedded Systems Architecture- By Tammy Noergaard, Elsevier Publications, 2013.
- 2. Embedded Systems-By Shibu.K.V-Tata McGraw Hill Education Private Limited, 2013.

References:

- 1. Embedded System Design, Frank Vahid, Tony Givargis, John Wiley Publications, 2013.
- 2. Embedded Systems-Lyla B.Das-Pearson Publications, 2013.

ANALOG IC DESIGN ELECTIVE - II

OBJECTIVES

The student will be introduced to

- The student will be able to understand the behavior of MOS Devices and Small-Signal & Large-Signal Modeling of MOS Transistor and Analog Sub-Circuits.
- In this course, students can study CMOS Amplifiers like Differential Amplifiers, Cascode Amplifiers, Output Amplifiers, and Operational Amplifiers.
- Another main object of this course is to motivate the graduate students to design and to develop the Analog CMOS Circuits for different Analog operations.
- The concepts of Open-Loop Comparators and Different Types of Oscillators like Ring Oscillator, LC Oscillator etc.

UNIT -I:

MOS Devices and Modeling: The MOS Transistor, Passive Components- Capacitor & Resistor, Integrated circuit Layout, CMOS Device Modeling - Simple MOS Large-Signal Model, Other Model Parameters, Small-Signal Model for the MOS Transistor, Computer Simulation Models, Sub-threshold MOS Model.

UNIT -II:

Analog CMOS Sub-Circuits: MOS Switch, MOS Diode, MOS Active Resistor, Current Sinks and Sources, Current Mirrors-Current mirror with Beta Helper, Degeneration, Cascode current Mirror and Wilson Current Mirror, Current and Voltage References, Band gap Reference.

UNIT -III:

CMOS Amplifiers: Inverters, Differential Amplifiers, Cascode Amplifiers, Current Amplifiers, Output Amplifiers, High Gain Amplifiers Architectures.

UNIT -IV:

CMOS Operational Amplifiers: Design of CMOS Op Amps, Compensation of Op Amps, Design of Two-Stage Op Amps, Power- Supply Rejection Ratio of Two-Stage Op Amps, Cascode Op Amps, Measurement Techniques of OP Amp.

UNIT -V:

Comparators: Characterization of Comparator, Two-Stage, Open-Loop Comparators, Other Open-Loop Comparators, Improving the Performance of Open-Loop Comparators, Discrete-Time Comparators.

UNIT -VI:

Oscillators & Phase-Locked Loops: General Considerations, Ring Oscillators, LC Oscillators, Voltage Controlled Oscillators.

Simple PLL, Charge Pump PLLs, Non-Ideal Effects in PLLs, Delay Locked Loops, Applications.

Text Books:

- 1. Design of Analog CMOS Integrated Circuits- Behzad Razavi, TMH Edition.
- 2. CMOS Analog Circuit Design Philip E. Allen and Douglas R. Holberg, Oxford University Press, International Second Edition/Indian Edition, 2010.

References:

- 1. Analysis and Design of Analog Integrated Circuits- Paul R. Gray, Paul J. Hurst, S. Lewis and R. G. Meyer, Wiley India, Fifth Edition, 2010.
- 2. Analog Integrated Circuit Design- David A.Johns, Ken Martin, Wiley Student Edn, 2013.

OUTCOMES

After going through this course the student will be able to

- Understand the concepts of MOS Devices and Modeling.
- Design and analyze any Analog Circuits in real time applications.
- Extend the Analog Circuit Design to Different Applications in Real Time.
- Understand of Open-Loop Comparators and Different Types of Oscillators.

NETWORK SECURITY AND CRYPTOGRAPHY ELECTIVE - II

OBJECTIVES:

- In this course the following principles and practice of cryptography and network security are covered:
- Classical systems, symmetric block ciphers (DES, AES, other contemporary symmetric ciphers)
- Public-key cryptography (RSA, discrete logarithms),
- Algorithms for factoring and discrete logarithms, cryptographic protocols, hash functions, authentication, key management, key exchange, signature schemes,
- Email and web security, viruses, firewalls, digital right management, and other topics.

UNIT- I:

Basic Principles

Security Goals, Cryptographic Attacks, Services and Mechanisms, Mathematics of Cryptography.

UNIT-II:

Symmetric Encryption

Mathematics of Symmetric Key Cryptography, Introduction to Modern Symmetric Key Ciphers, Data Encryption Standard, Advanced Encryption Standard.

UNIT-III:

Asymmetric Encryption

Mathematics of Asymmetric Key Cryptography, Asymmetric Key Cryptography

UNIT-IV:

Data Integrity, Digital Signature Schemes & Key Management

Message Integrity and Message Authentication, Cryptographic Hash Functions, Digital Signature, Key Management.

UNIT -V:

Network Security-I

Security at application layer: PGP and S/MIME, Security at the Transport Layer: SSL and TLS

UNIT -VI:

Network Security-II

Security at the Network Layer: IPSec, System Security

OUTCOMES:

- To be familiarity with information security awareness and a clear understanding of its importance.
- To master fundamentals of secret and public cryptography
- To master protocols for security services
- To be familiar with network security threats and countermeasures
- To be familiar with network security designs using available secure solutions (such asPGP,
- SSL, IPSec, etc)

TEXT BOOKS:

- 1. Cryptography and Network Security, Behrouz A Forouzan, DebdeepMukhopadhyay, (3e) Mc Graw Hill.
- 2. Cryptography and Network Security, William Stallings, (6e) Pearson.
- 3. Everyday Cryptography, Keith M.Martin, Oxford.

REFERENCE BOOKS:

1. Network Security and Cryptography, Bernard Meneges, Cengage Learning.

IV Year - I Semester	L	Т	Р	С
Iv Ital - I Semester	0	0	3	2

MICROWAVE ENGINEERING & OPTICAL LAB

Minimum Twelve Experiments to be conducted:

Part – A (Any 7 Experiments (8 & 9 compulsory)) :

- 1. Reflex Klystron Characteristics.
- 2. Gunn Diode Characteristics.
- 3. Attenuation Measurement.
- 4. Directional Coupler Characteristics.
- 5. Impedance and Frequency Measurement.
- 6. Scattering parameters of Circulator.
- 7. Scattering parameters of Magic Tee.
- 8. Radiation Pattern of Horn and Parabolic Antennas.
- 9. Synthesis of Microstip antennas (Rectangular Structure) Using HFSS.

Part – B (Any 5 Experiments) :

- 10. Characterization of LED.
- 11. Characterization of Laser Diode.
- 12. Intensity modulation of Laser output through an optical fiber.
- 13. Measurement of Data rate for Digital Optical link.
- 14. Measurement of NA.
- 15. Measurement of losses for Analog Optical link.

Equipment required for Laboratories:

- 1. Regulated Klystron Power Supply, Klystron mount
- 2. VSWR Meter
- 3. Micro Ammeter
- 4. Multi meter
- 5. CRO
- 6. GUNN Power Supply, Pin Modulator
- 7. Crystal Diode detector
- 8. Micro wave components (Attenuation)
- 9. Frequency Meter
- 10. Slotted line carriage
- 11. Probe detector
- 12. Wave guide shorts
- 13. SS Tuner
- 14. Directional Coupler
- 15. E, H, Magic Tees
- 16. Circulators, Isolator
- 17. Matched Loads
- 18. Pyramidal Horn and Parabolic Antennas
- 19. Turntable for Antenna Measurements
- 20. HFSS Software
- 21. Fiber Optic Analog Trainer based LED
- 22. Fiber Optic Analog Trainer based laser
- 23. Fiber Optic Digital Trainer
- 24. Fiber cables (Plastic, Glass)

IV Voor I Somostor	L	Т	Р	С
IV Year - I Semester	0	0	3	2
DIGITAL SIGNAL PROCESSING LABORA	ATORY			

List of the Experiments / programs

To Student has to perform at least FOUR Experiments in each part

PART-1(SIGNALS)

- 1) Generation of discrete time signals for discrete signals
- 2) To verify the Linear Convolution
 - a) Using MATLAB
 - b) Using Code Composer Studio(CCS)
- 3) To verify the Circular Convolution for discrete signals
 - a) Using MATLAB
 - b) Using Code Composer Studio(CCS)
- 4) To Find the addition of Sinusoidal Signals
- 5) To verify Discrete Fourier Transform(DFT) and Inverse Discrete Fourier Transform(IDFT)
 - a) Using MATLAB
 - b) Using Code Composer Studio(CCS)
- 6) Transfer Function Stability Analysis: using pole-zero plot, bode plot, Nyquist plot, z-plane plot.

PART-2 (FILTERS)

- 7) Frequency Response of IIR low pass Butterworth Filter
- 8) Frequency Response of IIR high pass Butterworth Filter
- 9) Frequency Response of IIR low pass Chebyshev Filter
- 10) Frequency Response of IIR high pass Chebyshev Filter
- 11) Frequency Response of FIR low pass Filter using Rectangle Window
- 12) Frequency Response of FIR low pass Filter using Triangle Window

PART – 3(IMAGE PROCESSING)

- 13) An image processing in a false contouring system
- 14) To generate the histogram equalization to the image
- 15) To verify the Normalized Cross Correlation to the addition of noise and removal of noise using filters to an image.
- 16) Compute the edge of an image using spatial filters.
- 17) Perform the image motion blur and calculate PSNR to the noise image and also noise free image.
- 18) To verify the PSNR to the Second order Decomposition of Discrete Wavelet transforms and to the reconstructed image using inverse Discrete Wavelet transform

IV Year - II Semester	L	Т	Р	С
	4	0	0	3

CELLULAR AND MOBILE COMMUNICATIONS

OBJECTIVES

The student will be introduced to:

- 1. Understand the basic cellular concepts like frequency reuse, cell splitting, cell sectoring etc., and various cellular systems.
- 2. Understand the different types of interference s influencing cellular and mobile communications.
- 3. Understand the frequency management, channel assignment and various propagation effects in cellular environment.
- 4. Understand the different types antennas used at cell site and mobile.
- 5. Understand the concepts of handoff and types of handoffs.
- 6. Understand the architectures of GSM and 3G cellular systems.

UNIT I

CELLULAR MOBILE RADIO SYSTEMS: Introduction to Cellular Mobile System, uniqueness of mobile radio environment, operation of cellular systems, consideration of the components of Cellular system, Hexagonal shaped cells, Analog and Digital Cellular systems.

CELLULAR CONCEPTS: Evolution of Cellular systems, Concept of frequency reuse, frequency reuse ratio, Number of channels in a cellular system, Cellular traffic: trunking and blocking, Grade of Service; Cellular structures: macro, micro, pico and femto cells; Cell splitting, Cell sectoring.

UNIT II

INTERFERENCE: Types of interferences, Introduction to Co-Channel Interference, real time Co-Channel interference, Co-Channel measurement, Co-channel Interference Reduction Factor, desired C/I from a normal case in a omni directional Antenna system, design of Antenna system, antenna parameters and their effects, diversity receiver, non-cochannel interference-different types.

UNIT III

FREQUENCY MANAGEMENT AND CHANNEL ASSIGNMENT: Numbering and grouping, setup access and paging channels, channel assignments to cell sites and mobile units: fixed channel and non-fixed channel assignment, channel sharing and borrowing, overlaid cells.

CELL COVERAGE FOR SIGNAL AND TRAFFIC: Signal reflections in flat and hilly terrain, effect of human made structures, phase difference between direct and reflected paths, straight line path loss slope, general formula for mobile propagation over water and flat open area, near and long distance propagation, antenna height gain, form of a point to point model.

UNIT IV

CELL SITE AND MOBILE ANTENNAS : Sum and difference patterns and their synthesis, omni directional antennas, directional antennas for interference reduction, space diversity antennas, umbrella pattern antennas, minimum separation of cell site antennas, high gain antennas.

UNIT V HANDOFF STRATEGIES

Concept of Handoff, types of handoff, handoff initiation, delaying handoff, forced handoff, mobile assigned handoff, intersystem handoff, vehicle locating methods, dropped call rates and their evaluation.

UNIT VI

DIGITAL CELLULAR NETWORKS: GSM architecture, GSM channels, multiple access schemes; TDMA, CDMA, OFDMA; architecture of 3G cellular systems.

TEXTBOOKS :

- 1. Mobile Cellular Telecommunications W.C.Y. Lee, Tata McGraw Hill, 2rd Edn., 2006.
- 2. Principles of Mobile Communications Gordon L. Stuber, Springer International 2nd Edition, 2007.

REFERENCES:

1. Wireless Communications – Theodore. S. Rapport, Pearson education, 2nd Edn., 2002.

- 2. Wireless and Mobile Communications Lee McGraw Hills, 3rd Edition, 2006.
- 3. Mobile Cellular Communication G Sasibhushana Rao Pearson
- 3. Wireless Communication and Networking Jon W. Mark and Weihua Zhqung, PHI, 2005.
- 4. Wireless Communication Technology R. Blake, Thompson Asia Pvt. Ltd., 2004.

Outcomes:

At the end of this course the student can able to:

- 1. Identify the limitations of conventional mobile telephone systems; understand the concepts of cellular systems.
- 2. Understand the frequency management, channel assignment strategies and antennas in cellular systems.
- 3. Understand the concepts of handoff and architectures of various cellular systems.

W Veen H Comester	L	Т	Р	С
IV Year - II Semester	4	0	0	3
ELECTRONIC MEASUREMENTS AND INSTRUM	ENTAT	ΓΙΟΝ		

UNIT I

Performance characteristics of instruments, Static characteristics, Accuracy, Resolution, Precision, Expected value, Error, Sensitivity. Errors in Measurement, Dynamic Characteristics-speed of response, Fidelity, Lag and Dynamic error. DC Voltmeters- Multi-range, Range extension/Solid state and differential voltmeters, AC voltmeters- multi range, range extension, shunt. Thermocouple type RF ammeter, Ohmmeters series type, shunt type, Multi-meter for Voltage, Current and resistance measurements.

UNIT II

Signal Generator- fixed and variable, AF oscillators, Standard and AF sine and square wave signal generators, Function Generators, Square pulse, Random noise, sweep, Arbitrary waveform. Wave Analyzers, Harmonic Distortion Analyzers, Spectrum Analyzers, Digital Fourier Analyzers.

UNIT III

Oscilloscopes CRT features, vertical amplifiers, horizontal deflection system, sweep, trigger pulse, delay line, sync selector circuits, simple CRO, triggered sweep CRO, Dual beam CRO, . Dual trace oscilloscope, sampling oscilloscope, storage oscilloscope, digital readout oscilloscope, digital storage oscilloscope, Lissajous method of frequency measurement, standard specifications of CRO, probes for CRO- Active & Passive, attenuator type.

UNIT IV

AC Bridges Measurement of inductance- Maxwell's bridge, Anderson bridge. Measurement of capacitance - Schearing Bridge. Wheat stone bridge. Wien Bridge, Errors and precautions in using bridges. Q-meter.

UNIT V

Transducers- active & passive transducers : Resistance, Capacitance, inductance; Strain gauges, LVDT, Piezo Electric transducers, Resistance Thermometers, Thermocouples, Thermistors, Sensistors.

UNIT VI

Measurement of physical parameters force, pressure, velocity, humidity, moisture, speed, proximity and displacement. Data acquisition systems.

TEXTBOOKS:

1. Electronic instrumentation, second edition - H.S.Kalsi, Tata McGraw Hill, 2004.

2. Modern Electronic Instrumentation and Measurement Techniques – A.D. Helfrick and W.D. Cooper, PHI, 5th Edition, 2002.

REFERENCES:

- 1. Electronic Instrumentation & Measurements David A. Bell, PHI, 2nd Edition, 2003.
- 2. Electronic Test Instruments, Analog and Digital Measurements Robert A.Witte, Pearson Education, 2nd Ed., 2004.
- 3. Electronic Measurements & Instrumentations by K. Lal Kishore, Pearson Education 2005.

OUTCOMES

The student will be able to

- Select the instrument to be used based on the requirements.
- Understand and analyze different signal generators and analyzers.
- Understand the design of oscilloscopes for different applications.
- Design different transducers for measurement of different parameters.

IV Year - II Semester	L	Т	Р	С
IV Ital - II Semester	4	0	0	3

SATELLITE COMMUNICATIONS

OBJECTIVES

The student will be introduced to:

- 1. Understand the basic concepts, applications, frequencies used and types of satellite communications.
- 2. Understand the concept of look angles, launches and launch vehicles and orbital effects in satellite communications.
- 3. Understand the various satellite subsystems and its functionality.
- 4. Understand the concepts of satellite link design and calculation of C/N ratio.
- 5. Understand the concepts of multiple access and various types of multiple access techniques in satellite systems.
- 6. Understand the concepts of satellite navigation, architecture and applications of GPS.

UNIT I

INTRODUCTION [2] : Origin of Satellite Communications, Historical Back-ground, Basic Concepts of Satellite Communications, Frequency allocations for Satellite Services, Applications, Future Trends of Satellite Communications.

ORBITAL MECHANICS AND LAUNCHERS[1] : Orbital Mechanics, Look Angle determination, Orbital perturbations, Orbit determination, launches and launch vehicles, Orbital effects in communication systems performance.

UNIT II

SATELLITE SUBSYSTEMS[1]: Attitude and orbit control system, telemetry, tracking, Command and monitoring, power systems, communication subsystems, Satellite antenna Equipment reliability and Space qualification.

UNIT III

SATELLITE LINK DESIGN[1] : Basic transmission theory, system noise temperature and G/T ratio, Design of down links, up link design, Design of satellite links for specified C/N, System design example.

UNIT IV

MULTIPLE ACCESS[1][2] : Frequency division multiple access (FDMA) Intermodulation, Calculation of C/N. Time division Multiple Access (TDMA) Frame structure, Examples. Satellite Switched TDMA Onboard processing, DAMA, Code Division Multiple access (CDMA),Spread spectrum transmission and reception.

UNIT V

EARTH STATION TECHNOLOGY[3] : Introduction, Transmitters, Receivers, Antennas, Tracking systems, Terrestrial interface, Primary power test methods.

LOW EARTH ORBIT AND GEO-STATIONARY SATELLITE SYSTEMS[1] : Orbit consideration, coverage and frequency considerations, Delay & Throughput considerations, System considerations, Operational NGSO constellation Designs

UNIT VI

SATELLITE NAVIGATION & THE GLOBAL POSITIONING SYSTEM [1] : Radio and Satellite Navigation, GPS Position Location principles, GPS Receivers and codes, Satellite signal acquisition, GPS Navigation Message, GPS signal levels, GPS receiver operation, GPS C/A code accuracy, Differential GPS.

TEXT BOOKS:

- Satellite Communications Timothy Pratt, Charles Bostian and Jeremy Allnutt, WSE, Wiley Publications, 2nd Edition, 2003.
- Satellite Communications Engineering Wilbur L. Pritchard, Robert A Nelson and Henri G.Suyderhoud, 2nd Edition, Pearson Publications, 2003.

REFERENCES :

- 1. Satellite Communications : Design Principles M. Richharia, BS Publications, 2nd Edition, 2003.
- 2. Satellite Communication D.C Agarwal, Khanna Publications, 5th Ed.
- 3. Fundamentals of Satellite Communications K.N. Raja Rao, PHI, 2004
- 4. Satellite Communications Dennis Roddy, McGraw Hill, 2nd Edition, 1996.

Outcomes:

At the end of this course the student can able to:

- 1. Understand the concepts, applications and subsystems of Satellite communications.
- 2. Derive the expression for G/T ratio and to solve some analytical problems on satellite link design.
- 3. Understand the various types of multiple access techniques and architecture of earth station design.
- 4. Understand the concepts of GPS and its architecture.

IV Year - II Semester	L	Т	Р	С	
iv i ear - ii Semester	4	0	0	3	

WIRELESS SENSORS AND NETWORKS ELECTIVE-III

UNIT I

OVERVIEW OF WIRELESS SENSOR NETWORKS:

Key definitions of sensor networks, Advantages of sensor Networks, Unique constraints an challenges, Driving Applications, Enabling Technologies for Wireless Sensor Networks.

ARCHITECTURES:

Single-Node Architecture - Hardware Components, Energy Consumption of Sensor Nodes, Operating Systems and Execution Environments, Network Architecture -Sensor Network Scenarios, Optimization Goals and Figures of Merit, Gateway Concepts.

UNIT II

NETWORKING Technologies:

Physical Layer and Transceiver Design Considerations, Personal area networks (PANs), hidden node and exposed node problem, Topologies of PANs, MANETs, WANETs.

UNIT-III

MAC Protocols for Wireless Sensor Networks:

Issues in Designing a MAC protocol for Ad Hoc Wireless Networks, Design goals of a MAC Protocol for Ad Hoc Wireless Networks, Classifications of MAC Protocols, Contention - Based Protocols, Contention - Based Protocols with reservation Mechanisms, Contention – Based MAC Protocols with Scheduling Mechanisms, MAC Protocols that use Directional Antennas, Other MAC Protocols.

UNIT-IV

ROUTING PROTOCOLS:

Introduction, Issues in Designing a Routing Protocol for Ad Hoc Wireless Networks, Classification of Routing Protocols, Table –Driven Routing Protocols, On – Demand Routing Protocols, Hybrid Routing Protocols, Routing Protocols with Efficient Flooding Mechanisms, Hierarchical Routing Protocols, Power – Aware Routing Protocols, Proactive Routing

UNIT-V

TRANSPORT LAYER AND SECURITY PROTOCOLS:

Introduction, Issues in Designing a Transport Layer Protocol for Ad Hoc Wireless Networks, Design Goals of a Transport Layer Protocol for Ad Hoc Wireless Networks, Classification of Transport Layer Solutions, TCP Over Ad Hoc Wireless Networks, Other Transport Layer Protocol for Ad Hoc Wireless Networks,

UNIT- VI

SECURITY IN WSNs:

Security in Ad Hoc Wireless Networks, Network Security Requirements, Issues and Challenges in Security Provisioning, Network Security Attacks, Key Management, Secure Routing in Ad Hoc Wireless Networks.

SENSOR NETWORK PLATFORMS AND TOOLS:

Sensor Node Hardware – Berkeley Motes, Programming Challenges, Node-level software platforms, Node-level Simulators, State-centric programming.

APPLICATIONS of WSN:

S Ultra wide band radio communication, Wireless fidelity systems. Future directions, Home automation, smart metering Applications

TEXT BOOKS:

- 1. Ad Hoc Wireless Networks: Architectures and Protocols C. Siva Ram Murthy and B.S.Manoj, 2004, PHI
- 2. Wireless Ad- hoc and Sensor Networks: Protocols, Performance and Control Jagannathan Sarangapani, CRC Press
- 3. Holger Karl & Andreas Willig, "Protocols And Architectures for Wireless Sensor Networks", John Wiley, 2005.

REFERENCES:

- 1. Kazem Sohraby, Daniel Minoli, & Taieb Znati, "Wireless Sensor Networks- Technology, Protocols, and Applications", John Wiley, 2007.
- 2. Feng Zhao & Leonidas J. Guibas, "Wireless Sensor Networks- An Information Processing Approach", Elsevier, 2007.
- 3. Ad- Hoc Mobile Wireless Networks: Protocols & Systems, C.K. Toh ,1 ed. Pearson Education.
- 4. Wireless Sensor Networks C. S. Raghavendra, Krishna M. Sivalingam, 2004, Springer
- 5. Wireless Sensor Networks S Anandamurugan, Lakshmi Publications

DIGITAL IC DESIGN ELECTIVE-III

OBJECTIVES

- The student will be able to understand the MOS Design.
- In this course, students can study Combinational MOS Logic Circuits and Sequential MOS Logic Circuits.
- Another main object of this course is to motivate the graduate students to design and to develop the Digital Integreated Circuits for different Applications.
- The concepts of Semiconductor Memories, Flash Memory, RAM array organization.

UNIT-I:

MOS Design: Pseudo NMOS Logic – Inverter, Inverter threshold voltage, Output high voltage, Output Low voltage, Gain at gate threshold voltage, Transient response, Rise time, Fall time, Pseudo NMOS logic gates, Transistor equivalency, CMOS Inverter logic.

UNIT-II:

Combinational MOS Logic Circuits: MOS logic circuits with NMOS loads, Primitive CMOS logic gates – NOR & NAND gate, Complex Logic circuits design – Realizing Boolean expressions using NMOS gates and CMOS gates, AOI and OIA gates, CMOS full adder, CMOS transmission gates, Designing with Transmission gates.

UNIT-III:

Sequential MOS Logic Circuits: Behaviour of bistable elements, SR Latch, Clocked latch and flip flop circuits, CMOS D latch and edge triggered flip-flop.

UNIT-IV:

Dynamic Logic Circuits: Basic principle, Voltage Bootstrapping, Synchronous dynamic pass transistor circuits, Dynamic CMOS transmission gate logic, High performance Dynamic CMOS circuits.

UNIT-V:

Interconnect: Capacitive Parasitics, Resistive Parasitics, Inductive Parasitics, Advanced Interconnect Techniques.

UNIT-VI:

Semiconductor Memories: Memory Types, RAM array organization, DRAM – Types, Operation, Leakage currents in DRAM cell and refresh operation, SRAM operation Leakage currents in SRAM cells, Flash Memory-NOR flash and NAND flash.

Text Books:

- 1. Digital Integrated Circuits A Design Perspective, Jan M. Rabaey, Anantha Chandrakasan, Borivoje Nikolic, 2nd Ed., PHI.
- 2. Digital Integrated Circuit Design Ken Martin, Oxford University Press, 2011.

References:

- CMOS Digital Integrated Circuits Analysis and Design Sung-Mo Kang, Yusuf Leblebici, TMH, 3rd Ed., 2011.
- 2. CMOS VLSI Design Neil H.E Weste, David harris, Ayan Banerjee 3rd Edition, Pearson

OUTCOMES

After going through this course the student will be able to

- Understand the concepts of MOS Design.
- Design and analysis of Combinational and Sequential MOS Circuits.
- Extend the Digital IC Design to Different Applications.
- Understand the Concepts of Semiconductor Memories, Flash Memory, RAM array organization.

OPERATING SYSTEMS ELECTIVE-III

OBJECTIVES:

- Study the basic concepts and functions of operating systems.
- Understand the structure and functions of OS.
- Learn about Processes, Threads and Scheduling algorithms.
- Understand the principles of concurrency and Deadlocks.
- Learn various memory management schemes.
- Study I/O management and File systems.
- Learn the basics of Linux system and perform administrative tasks on Linux Servers.

UNIT I

Introduction to Operating System Concept: Types of operating systems, operating systems concepts, operating systems services, Introduction to System call, System call types.

UNIT-II:

Process Management – Process concept, The process, Process State Diagram, Process control block, Process Scheduling- Scheduling Queues, Schedulers, Operations on Processes, Interprocess Communication, Threading Issues, Scheduling-Basic Concepts, Scheduling Criteria, Scheduling Algorithms.

UNIT-III:

Memory Management: Swapping, Contiguous Memory Allocation, Paging, structure of the Page Table, Segmentation

Virtual Memory Management:

Virtual Memory, Demand Paging, Page-Replacement Algorithms, Thrashing

UNIT-IV:

Concurrency: ProcessSynchronization, The Critical- Section Problem, Synchronization Hardware, Semaphores, Classic Problems of Synchronization, Monitors, Synchronization examples

Principles of deadlock – System Model, Deadlock Characterization, Deadlock Prevention, Detection and Avoidance, Recovery form Deadlock

UNIT-V:

File system Interface- the concept of a file, Access Methods, Directory structure, File system mounting, file sharing, protection.

File System implementation- File system structure, allocation methods, free-space management

Mass-storage structure overview of Mass-storage structure, Disk scheduling, Device drivers,

UNIT VI:

Linux System: Components of LINUX, Interprocess Communication, Synchronisation, Interrupt, Exception and System Call.

Android Software Platform: Android Architecture, Operating System Services, Android Runtime Application Development, Application Structure, Application Process management

OUTCOMES:

- Design various Scheduling algorithms.
- Apply the principles of concurrency.
- Design deadlock, prevention and avoidance algorithms.
- Compare and contrast various memory management schemes.
- Design and Implement a prototype file systems.
- Perform administrative tasks on Linux Servers
- Introduction to Android Operating System Internals

TEXT BOOK:

- 1. Operating System Concepts, Abraham Silberschatz, Peter Baer Galvin and Greg Gagne 9th Edition, John Wiley and Sons Inc., 2012.
- 2. Operating Systems Internals and Design Principles, William Stallings, 7th Edition, Prentice Hall, 2011.
- 3. Operating Systems-S Halder, Alex A Aravind Pearson Education Second Edition 2016 .

REFERENCES:

- 1. Modern Operating Systems, Andrew S. Tanenbaum, Second Edition, Addison Wesley, 2001.
- 2. Operating Systems: A Design-Oriented Approach, Charles Crowley, Tata Mc Graw Hill Education", 1996.
- 3. Operating Systems: A Concept-Based Approach, D M Dhamdhere, Second Edition, Tata Mc Graw-Hill Education, 2007.

ACADEMIC REGULATIONS

COURSE STRUCTURE

AND

DETAILED SYLLABUS

ELECTRONICS & COMMUNICATION ENGINEERING

For

B.Tech., FOUR YEAR DEGREE COURSE

(Applicable for the batches admitted from 2013-14)

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY KAKINADA KAKINADA – 533003, ANDHRA PRADESH, INDIA.

Academic Regulations (R13) for B. Tech. (Regular)

Applicable for the students of B. Tech. (Regular) from the Academic Year 2013-14 onwards

1. Award of B. Tech. Degree

A student will be declared eligible for the award of B. Tech. Degree if he fulfils the following academic regulations :

- 1. A student shall be declared eligible for the award of the B. Tech Degree, if he pursues a course of study in not less than four and not more than eight academic years.
- 2. The candidate shall register for 180 credits and secure all the 180 credits.

2. Courses of study

The following courses of study are offered at present as specializations for the B. Tech. Courses :

S.No.	Branch
01	Electronics and Communication Engineering
02	Electrical and Electronics Engineering
03	Civil Engineering
04	Mechanical Engineering
05	Computer Science and Engineering
06	Petro Chemical Engineering
07	Information Technology
08	Chemical Engineering
09	Electronics and Instrumentation Engineering
10	Bio-Medical Engineering
11	Aeronautical Engineering
12	Automobile Engineering
13	Bio Technology
14	Electronics and Computer Engineering
15	Mining Engineering
16	Petroleum Engineering
17	Metallurgical Engineering
18	Agricultural Engineering

3. Distribution and Weightage of Marks

- (i) The performance of a student in each semester shall be evaluated subject – wise with a maximum of 100 marks for theory subject and 75 marks for practical subject. The project work shall be evaluated for 200 marks.
- (ii) For theory subjects the distribution shall be 30 marks for Internal Evaluation and 70 marks for the End Examinations.
- (iii) For theory subjects, during the semester there shall be 2 tests. The weightage of Internal marks for 30 consists of Descriptive - 15, Assignment - 05 (Theory, Design, Analysis, Simulation, Algorithms, Drawing, etc. as the case may be) Objective -10 (Conducted at College level with 20 Multiple choice question with a weightage of ¹/₂ Mark each). The objective examination is for 20 minutes duration. The subjective examination is for 90 minutes duration conducted for 15 marks. Each subjective type test question paper shall contain 3 questions and all questions need to be answered. The Objective examination conducted for 10 marks and subjective examination conducted for 15 marks are to be added to the assignment marks of 5 for finalizing internal marks for 30. The best of the two tests will be taken for internal marks. As the syllabus is framed for 6 units, the 1st mid examination (both Objective and Subjective) is conducted in 1-3 units and second test in 4-6 units of each subject in a semester.
- (iv) The end semester examination is conducted covering the topics of all Units for 70 marks. Part A contains a mandatory question (Brainstorming / Thought provoking / case study) for 22 marks. Part B has 6 questions (One from each Unit). The student has to answer 3 out of 6 questions in Part B and carries a weightage of 16 marks each.
- (v) For practical subjects there shall be continuous evaluation during the semester for 25 internal marks and 50 end examination marks. The internal 25 marks shall be awarded as follows: day to day work - 10 marks, Record-5 marks and the remaining 10 marks to be awarded by conducting an internal laboratory test. The end examination shall be conducted by the teacher concerned and external examiner.
- (vi) For the subject having design and / or drawing, (such as Engineering Graphics, Engineering Drawing, Machine Drawing) and estimation, the distribution shall be 30 marks for internal evaluation (20 marks for day – to – day work, and 10 marks for internal tests) and 70 marks for end examination. There shall be two internal tests in a Semester and the better of the two shall be considered for the award of marks for internal tests.

- (vii) For the seminar, the student shall collect the information on a specialized topic and prepare a technical report, showing his understanding over the topic, and submit to the department, which shall be evaluated by the Departmental committee consisting of Head of the department, seminar supervisor and a senior faculty member. The seminar report shall be evaluated for 50 marks. There shall be no external examination for seminar.
- (viii) Out of a total of 200 marks for the project work, 60 marks shall be for Internal Evaluation and 140 marks for the End Semester Examination. The End Semester Examination (Viva – Voce) shall be conducted by the committee. The committee consists of an external examiner, Head of the Department and Supervisor of the Project. The evaluation of project work shall be conducted at the end of the IV year. The Internal Evaluation shall be on the basis of two seminars given by each student on the topic of his project and evaluated by an internal committee.
- (ix) Laboratory marks and the internal marks awarded by the College are not final. The marks are subject to scrutiny and scaling by the University wherever felt desirable. The internal and laboratory marks awarded by the College will be referred to a Committee. The Committee shall arrive at a scaling factor and the marks will be scaled as per the scaling factor. The recommendations of the Committee are final and binding. The laboratory records and internal test papers shall be preserved in the respective departments as per the University norms and shall be produced to the Committees of the University as and when they ask for.

4. Attendance Requirements

- 1. A student is eligible to write the University examinations if he acquires a minimum of 75% of attendance in aggregate of all the subjects.
- Condonation of shortage of attendance in aggregate up to 10% (65% and above and below 75%) in each semester may be granted by the College Academic Committee
- 3. Shortage of Attendance below 65% in aggregate shall not be condoned.
- 4. A student who is short of attendance in semester may seek readmission into that semester when offered within 4 weeks from the date of the commencement of class work.
- 5. Students whose shortage of attendance is not condoned in any semester are not eligible to write their end semester examination of that class.

- 6. A stipulated fee shall be payable towards condonation of shortage of attendance.
- 7. A student will be promoted to the next semester if he satisfies the (i)attendance requirement of the present semester and (ii) credits.
- 8. If any candidate fulfills the attendance requirement in the present semester, he shall not be eligible for readmission into the same class.

5. Minimum Academic Requirements

The following academic requirements have to be satisfied in addition to the attendance requirements mentioned in item no. 4.

- 5.1 A student is deemed to have satisfied the minimum academic requirements if he has earned the credits allotted to each theory/practical design/drawing subject/project and secures not less than 35% of marks in the end semester exam, and minimum 40% of marks in the sum total of the internal marks and end semester examination marks.
- 5.2 A student shall be promoted from first year to second year if he fulfills the minimum attendance requirement.
- 5.3 A student will be promoted from II year to III year if he fulfills the academic requirement of 40% of the credits up to II year I semester from all the examinations, whether or not the candidate takes the examinations and secures prescribed minimum attendance in II year II semester.
- 5.4 A student shall be **promoted from III year to IV year** if he fulfils the academic requirements of 40% of the credits up to III year I semester from all the examinations, whether or not the candidate takes the examinations and secures prescribed minimum attendance in III year II semester.
- 5.5 A student shall register and put up minimum attendance in all 180 credits and earn all 180 credits. Marks obtained in all the 180 credits shall be considered for the calculation of percentage of marks.

6. <u>Course pattern</u>

- 1. The entire course of study is for four academic years, all the years are on semester pattern.
- 2. A student eligible to appear for the end semester examination in a subject, but absent from it or has failed in the end semester examination, may write the exam in that subject when conducted next.

3. When a student is detained for lack of credits / shortage of attendance, he may be re-admitted into the same semester / year in which he has been detained. However, the academic regulations under which he was first admitted shall continues to be applicable to him.

7. <u>Award of Class</u>

After a student has satisfied the requirements prescribed for the completion of the program and is eligible for the award of B. Tech. Degree, he shall be placed in one of the following four classes:

Class Awarded	% of marks to be secured		
First Class with Distinction	70% and above	From the aggregate	
First Class	Below 70 but not less than 60%	marks secured from 180	
Second Class	Below 60% but not less than 50%	Credits.	
Pass Class	Below 50% but not less than 40%		

The marks obtained in internal evaluation and end semester examination shall be shown separately in the memorandum of marks.

8. <u>Minimum Instruction Days</u>

The minimum instruction days for each semester shall be 90 working days.

- 9. There shall be no branch transfers after the completion of the admission process.
- 10. There shall be no transfer from one college/stream to another within the Constituent Colleges and Units of Jawaharlal Nehru Technological University Kakinada.

11. WITHHOLDING OF RESULTS

If the student has not paid the dues, if any, to the university or if any case of indiscipline is pending against him, the result of the student will be withheld. His degree will be withheld in such cases.

12. TRANSITORY REGULATIONS

- 1. Discontinued or detained candidates are eligible for readmission as and when next offered.
- 2. In case of transferred students from other Universities, the credits shall be transferred to JNTUK as per the academic regulations and course structure of the JNTUK.

13. General

- 1. Wherever the words "he", "him", "his", occur in the regulations, they include "she", "her", "hers".
- 2. The academic regulation should be read as a whole for the purpose of any interpretation.
- 3. In case of any doubt or ambiguity in the interpretation of the above rules, the decision of the Vice-Chancellor is final.
- 4. The University may change or amend the academic regulations or syllabi at any time and the changes or amendments made shall be applicable to all the students with effect from the dates notified by the University.
- 5. The students seeking transfer to colleges affiliated to JNTUK from various other Universities/ Institutions have to pass the failed subjects which are equivalent to the subjects of JNTUK, and also pass the subjects of JNTUK on their own without the right to sessional marks which the candidates have not studied at the earlier Institution.

* * * *

Academic Regulations (R13) for B. Tech. (Lateral entry Scheme)

Applicable for the students admitted into II year B. Tech. from the Academic Year 2014-15 onwards

1 Award of B. Tech. Degree

A student will be declared eligible for the award of B. Tech. Degree if he fulfils the following academic regulations:

- 1.1 A student shall be declared eligible for the award of the B. Tech Degree, if he pursues a course of study in not less than three academic years and not more than six academic years.
- 1.2 The candidate shall register for 132 credits and secure all the 132 credits.
- 2. The attendance regulations of B. Tech. (Regular) shall be applicable to B.Tech.

3. **Promotion Rule**

A student shall be promoted from second year to third year if he fulfills the minimum attendance requirement.

A student shall be promoted from III year to IV year if he fulfils the academic requirements of 40% of the credits up to III year I semester from all the examinations, whether or not the candidate takes the examinations and secures prescribed minimum attendance in III year II semester.

4. Award of Class

After a student has satisfied the requirement prescribed for the completion of the program and is eligible for the award of B. Tech. Degree, he shall be placed in one of the following four classes:

Class Awarded	% of marks to be secured	
First Class with Distinction	70% and above	From the aggregate marks
First Class	Below 70% but not less than 60%	secured from 132 Credits from II
Second Class	Below 60% but not less than 50%	vear to IV year.
Pass Class	Below 50% but not less than 40%	

The marks obtained in the internal evaluation and the end semester examination shall be shown separately in the marks memorandum.

5. All the other regulations as applicable to **B. Tech. 4-year degree** course (Regular) will hold good for **B. Tech.** (Lateral Entry Scheme).

9

MALPRACTICES RULES

Disciplinary Action for / Improper Conduct in Examinations

	Nature of Malpractices / Improper conduct	Punishment
	If the candidate:	
1. (a)	Possesses or keeps accessible in examination hall, any paper, note book, programmable calculators, Cell phones, pager, palm computers or any other form of material concerned with or related to the subject of the examination (theory or practical) in which he is appearing but has not made use of (material shall include any marks on the body of the candidate which can be used as an aid in the subject of the examination)	Expulsion from the examination hall and cancellation of the performance in that subject only.
(b)	Gives assistance or guidance or receives it from any other candidate orally or by any other body language methods or communicates through cell phones with any candidate or persons in or outside the exam hall in respect of any matter.	Expulsion from the examination hall and cancellation of the performance in that subject only of all the candidates involved. In case of an outsider, he will be handed over to the police and a case is registered against him.
2.	Has copied in the examination hall from any paper, book, programmable calculators, palm computers or any other form of material relevant to the subject of the examination (theory or practical) in which the candidate is appearing.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted to appear for the remaining examinations of the subjects of that Semester/year. The Hall Ticket of the candidate is to be cancelled and sent to the University.
3.	Impersonates any other candidate in connection with the examination.	The candidate who has impersonated shall be expelled from examination hall. The candidate is also debarred and forfeits the seat. The performance of the original candidate who has been impersonated, shall be cancelled in all the subjects of the

		examination (including practicals and project work) already appeared and shall not be allowed to appear for examinations of the remaining subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat. If the imposter is an outsider, he will be handed over to the police and a case is registered against him.
4.	Smuggles in the Answer book or additional sheet or takes out or arranges to send out the question paper during the examination or answer book or additional sheet, during or after the examination.	Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.
5.	Uses objectionable, abusive or offensive language in the answer paper or in letters to the examiners or writes to the examiner requesting him to award pass marks.	Cancellation of the performance in that subject.
6.	Refuses to obey the orders of the Chief Superintendent/Assistant – Superintendent / any officer on duty or misbehaves or creates disturbance of any kind in and around the examination hall or organizes a walk out or instigates others to walk out, or threatens the officer-in charge or any person on duty in or outside the	In case of students of the college, they shall be expelled from examination halls and cancellation of their performance in that subject and all other subjects the candidate(s) has (have) already appeared and shall not be permitted to appear for the remaining examinations of the subjects of that

	examination hall of any injury to his person or to any of his relations whether by words, either spoken or written or by signs or by visible representation, assaults the officer-in- charge, or any person on duty in or outside the examination hall or any of his relations, or indulges in any other act of misconduct or mischief which result in damage to or destruction of property in the examination hall or any part of the College campus or engages in any other act which in the opinion of the officer on duty amounts to use of unfair means or misconduct or has the tendency to disrupt the orderly conduct of the examination.	semester/year. The candidates also are debarred and forfeit their seats. In case of outsiders, they will be handed over to the police and a police case is registered against them.
7.	Leaves the exam hall taking away answer script or intentionally tears of the script or any part thereof inside or outside the examination hall.	Expulsion from the examination hall and cancellation of performance in that subject and all the other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred for two consecutive semesters from class work and all University examinations. The continuation of the course by the candidate is subject to the academic regulations in connection with forfeiture of seat.
8.	Possess any lethal weapon or firearm in the examination hall.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat.

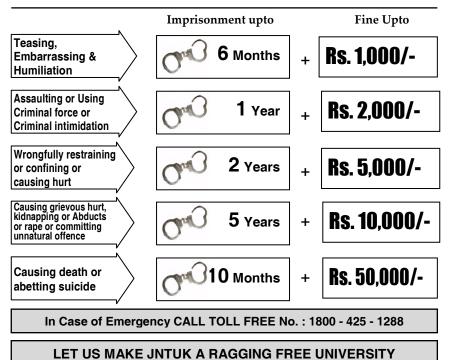
9.	If student of the college, who is not a candidate for the particular examination or any person not connected with the college indulges in any malpractice or improper conduct mentioned in clause 6 to 8.	Student of the colleges expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year. The candidate is also debarred and forfeits the seat. Person(s) who do not belong to the College will be handed over to police and, a police case will be registered against them.
10.	Comes in a drunken condition to the examination hall.	Expulsion from the examination hall and cancellation of the performance in that subject and all other subjects the candidate has already appeared including practical examinations and project work and shall not be permitted for the remaining examinations of the subjects of that semester/year.
11.	Copying detected on the basis of internal evidence, such as, during valuation or during special scrutiny.	Cancellation of the performance in that subject and all other subjects the candidate has appeared including practical examinations and project work of that semester/year examinations.
12.	If any malpractice is detected which is not covered in the above clauses 1 to 11 shall be reported to the University for further action to award suitable punishment.	

Malpractices identified by squad or special invigilators

- 1. Punishments to the candidates as per the above guidelines.
- 2. Punishment for institutions : (if the squad reports that the college is also involved in encouraging malpractices)
- (i) A show cause notice shall be issued to the college.
- (ii) Impose a suitable fine on the college.
- (iii) Shifting the examination centre from the college to another college for a specific period of not less than one year.

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA

KAKINADA-533003, Andhra Pradesh (India) For Constituent Colleges and Affiliated Colleges of JNTUK



Prohibition of ragging in educational institutions Act 26 of 1997

Salient Features

Ragging within or outside any educational institution is prohibited.

Ragging means doing an act which causes or is likely to cause Insult or Annoyance of Fear or Apprehension or Threat or Intimidation or outrage of modesty or Injury to a student

JAWAHARLAL NEHRU TECHNOLOGICAL UNIVERSITY: KAKINADA

KAKINADA-533003, Andhra Pradesh (India) For Constituent Colleges and Affiliated Colleges of JNTUK

ABSOLUTELY NOT TO RAGGING

- 1. Ragging is prohibited as per Act 26 of A.P. Legislative Assembly, 1997.
- 2. Ragging entails heavy fines and/or imprisonment.
- 3. Ragging invokes suspension and dismissal from the College.
- 4. Outsiders are prohibited from entering the College and Hostel without permission.
- 5. Girl students must be in their hostel rooms by 7.00 p.m.
- 6. All the students must carry their Identity Cards and show them when demanded.
- 7. The Principal and the Wardens may visit the Hostels and inspect the rooms any time.

Jawaharlal Nehru Technological University Kakinada For Constituent Colleges and Affiliated Colleges of JNTUK

In Case of Emergency CALL TOLL FREE No. : 1800 - 425 - 1288

LET US MAKE JNTUK A RAGGING FREE UNIVERSITY

COURSE STRUCTURE

I Year – I SEMESTER

S. No.	Subject	Т	Р	Credits
1	English – I	3		3
2	Mathematics - I	3+1		3
3	Mathematics – II (Mathematical Methods)	3+1		3
4	Engineering Physics	3+1		3
5	Professional Ethics and Human Values	3+1		3
6	Engineering Drawing	1+3		3
7	English - Communication Skills Lab -1		3	2
8	Engineering Physics Laboratory		3	2
9	Engineering Physics – Virtual Labs - Assignments		2	
10	Engineering Workshop& IT Workshop		3	2
	Total Credits			24

I Year – II SEMESTER

S. No.	Subject	Т	Р	Credits
1	English – II	3		3
2	Mathematics – III	3+1		3
3	Engineering Chemistry	3+1		3
4	Engineering Mechanics	3+1		3
5	Computer Programming	3+1		3
6	Network Analysis	3+1		3
7	Engineering Chemistry Laboratory		3	2
8	English - Communication Skills Lab -2		3	2
9	Computer Programming Lab		3	2
Total Credits				24

S. No.	Subject	Т	Р	Credits
1	Managerial Economics and Financial Analysis	3+1		3
2	Electronic Devices and Circuits	3+1	-	3
3	Data Structures	3+1	-	3
4	Environmental Studies	3		3
5	Signals & Systems	3+1		3
6	Electrical Technology	3+1	-	3
7	Electronic Devices and Circuits Lab	-	3	2
8	Networks &Electrical Technology Lab		3	2
Total Credits				22

II Year – II SEMESTER

S. No.	Subject	Т	Р	Credits
1	Electronic Circuit Analysis	3+1		3
2	Management Science	3+1		3
3	Random Variables & Stochastic Processes	3+1	-	3
4	Switching Theory & Logic Design	3+1		3
5	EM Waves and Transmission Lines	3+1		3
6	Analog Communications	3+1		3
7	Electronic Circuit Analysis Lab		3	2
8	Analog Communications Lab		3	2
Total Credits				22

III Year – I SEMESTER

S. No.	Subject	Т	Р	Credits
1	Pulse & Digital Circuits	3+1	-	3
2	Linear IC Applications	3+1	-	3
3	Control Systems	3+1	-	3
4	Digital System Design & Digital IC Applications	3+1	-	3
5	Antennas and Wave Propagation	3+1	-	3
6	Pulse & Digital Circuits Lab		3	2
7	LIC Applications Lab	-	3	2
8	Digital System Design & DICA Lab		3	2
9	IPR& Patents	3		2
	Total Credits			23

III Year – II SEMESTER

S. No.	Subject	Т	Р	Credits
1	Microprocessors and Microcontrollers	3+1	-	3
2	Digital Signal Processing	3+1	-	3
3	Digital Communications	3+1	-	3
4	Microwave Engineering	3+1	-	3
5	Open Elective	3+1	-	3
6	Microprocessors and Microcontrollers Lab	-	3	2
7	Digital Communications Lab	-	3	2
8	Digital Signal Processing Lab		3	2
9	Seminar		2	1
	Total Credits			22

S. No.	Subject	Т	Р	Credits
5. 110.			I	
1	VLSI Design	3+1	-	3
2	Computer Networks	3+1	-	3
3	Digital Image Processing	3+1	-	3
4	Computer Architecture & Organization	3+1	-	3
5	 Elective – I Electronic Switching Systems Analog IC Design Object Oriented Programming & O S Radar Systems Advanced Computer Architecture 	3+1	-	3
6	 Elective – II Optical Communication Digital IC Design Speech Processing Artificial Neural Network & Fuzzy Logic Network Security & Cryptography 	3+1	-	3
7	V L S I Lab	-	3	2
8	Microwave Engineering Lab	-	3	2
	Total Credits			22

IV Year – I SEMESTER

IV Year – II SEMESTER

S. No.	Subject	Т	Р	Credits
1	Cellular Mobile Communication	3+1		3
2	Electronic Measurements and	3+1		3
	Instrumentation			
3	Elective III	3+1		3
	1. Satellite Communication			
	2. Mixed signal Design			
	3. Embedded systems			
	4. RF Circuit Design			
	5. Cloud Computing			
4	Elective IV	3+1		3
	1.Wireless Sensors and Networks			
	2.System on Chip			
	3.Low Power IC Design			
	4.Bio-Medical Instrumentation			
	5.EMI/EMC			
5	Project & Seminar			9
	Total Credits			21

Total course credits = 48+44+45+43 = 180Open Electives:

- 1. Bio Medical Engineering
- 2. Fuzzy & Neural Networks
- 3. Image Processing (not for ECE Students)
- 4. Principles of Signals, Systems and Communications (Not for ECE Students)
- 5. Electronic Instrumentation (Not for ECE Students)

SYLLABUS

I Year – I SEMESTER

ENGLISH –I (Common to All Branches)

DETAILED TEXT-I English Essentials: Recommended Topics:

1. IN LONDON: M.K.GANDHI

<u>OBJECTIVE</u>: To apprise the learner how Gandhi spent a period of three years in London as a student.

<u>OUTCOME</u>: The learner will understand how Gandhi grew in introspection and maturity.

2. THE KNOWLEDGE SOCIETY- APJ KALAM

<u>OBJECTIVE</u>: To make the learners rediscover India as a land of Knowledge.

<u>OUTCOME</u>: The learners will achieve a higher quality of life, strength and sovereignty of a developed nation.

3. THE SCIENTIFIC POINT OF VIEW- J.B.S. HALDANE

<u>OBJECTIVE</u>: This essay discusses how scientific point of view seeks to arrive at the truth without being biased by emotion.

<u>OUTCOME</u>: This develops in the student the scientific attitude to solve many problems which we find difficult to tackle.

4. PRINCIPLES OF GOOD WRITING:

<u>OBJECTIVE</u>: To inform the learners how to write clearly and logically. **<u>OUTCOME</u>**: The learner will be able to think clearly and logically and write clearly and logically.

5. MAN'S PERIL

<u>OBJECTIVE</u>: To inform the learner that all men are in peril.

<u>OUTCOME</u>: The learner will understand that all men can come together and avert the peril.

6. THE DYING SUN—SIR JAMES JEANS

<u>OBJECTIVE</u>: This excerpt from the book "The Mysterious Universe" presents the mysterious nature of the Universe and the stars which present numerous problems to the scientific mind. Sir James Jeans uses a poetic approach to discuss the scientific phenomena.

<u>**OUTCOME**</u>: This provides the students to think about the scientific phenomena from a different angle and also exposes the readers to poetic expressions.

21

P C

0 3

Т

3 + 1

7. LUCK—MARK TWAIN

<u>OBJECTIVE</u>: This is a short story about a man's public image and his true nature. The theme of the story is that luck can be a factor of life, so that even if one is incompetent but lucky, one can still succeed.

<u>OUTCOME</u>: The story is humourous in that it contains a lot of irony. Thus this develops in the learner understand humourous texts and use of words for irony.

Text Book : 'English Essentials' by Ravindra Publications

NON-DETAILED TEXT:

(From Modern Trailblazers of Orient Blackswan) (Common single Text book for two semesters) (Semester I (1 to 4 lessons)/ Semester II (5 to 8 lessons)

1. G.D.Naidu

OBJECTIVE: To inspire the learners by G.D.Naidu's example of inventions and contributions.

OUTCOME: The learner will be in a position to emulate G.D.Naidu and take to practical applications.

2. G.R.Gopinath

OBJECTIVE: To inspire the learners by his example of inventions.

OUTCOME: Like G.R.Gopinath, the learners will be able to achieve much at a low cost and help the common man.

3. Sudhamurthy

OBJECTIVE: To inspire the learners by the unique interests and contributions of Sudha Murthy.

OUTCOME: The learner will take interest in multiple fields of knowledge and make life worthwhile through social service.

4. Vijay Bhatkar

OBJECTIVE: To inspire the learner by his work and studies in different fields of engineering and science.

OUTCOME: The learner will emulate him and produce memorable things.

Text Book : 'Trail Blazers' by Orient Black Swan Pvt. Ltd. Publishers

I Year – I SEMESTER

T P C 3+1 0 3

MATHEMATICS – I (DIFFERENTIAL EQUATIONS) (Common to All Branches)

UNIT I: Differential equations of first order and first degree:

Linear-Bernoulli-Exact-Reducible to exact.

Applications : Newton's Law of cooling-Law of natural growth and decayorthogonal trajectories.

Subject Category

ABET Learning Objectives a d e

ABET internal assessments 1 2 6

JNTUK External Evaluation A B E

UNIT II: Linear differential equations of higher order:

Non-homogeneous equations of higher order with constant coefficients with RHS term of the type e^{ax} , Sin ax, cos ax, polynomials in x, $e^{ax} V(x)$, xV(x).

Applications: LCR circuit, Simple Harmonic motion

Subject Category

ABET Learning Objectives a d e

ABET internal assessments 126

JNTUK External Evaluation A B E

UNIT III Laplace transforms:

Laplace transforms of standard functions-ShiftingTheorems, Transforms of derivatives and integrals – Unit step function –Dirac's delta function- Inverse Laplace transforms– Convolution theorem (with out proof).

Application: Solutions of ordinary differential equations using Laplace transforms.

Subject Category

ABET Learning Objectives a e

ABET internal assessments 126

JNTUK External Evaluation A B E

UNIT IV Partial differentiation:

Introduction- Total derivative-Chain rule-Generalized Mean Value theorem for single variable (without proof)-Taylors and Mc Laurent's series for two variables– Functional dependence- Jacobian.

Applications: Maxima and Minima of functions of two variables with constraints and without constraints.

24

Subject Category

ABET Learning Objectives a c e

ABET internal assessments 126

JNTUK External Evaluation A B E

UNIT V First order Partial differential equations:

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions –solutions of first order linear (Lagrange) equation and nonlinear (standard type) equations

Subject Category

ABET Learning Objectives a e

ABET internal assessments 126

JNTUK External Evaluation A B E

UNIT VI Higher order Partial differential equations:

Solutions of Linear Partial differential equations with constant coefficients-Method of separation of Variables

Applications : One- dimensional Wave, Heat equations - two-dimensional Laplace Equation.

Subject Category

ABET Learning Objectives a e

ABET internal assessments 126

JNTUK External Evaluation B E

Books:

- 1. **B.S.GREWAL,** Higher Engineering Mathematics, 42nd Edition, Khanna Publishers
- 2. **ERWIN KREYSZIG,** Advanced Engineering Mathematics, 9th Edition, Wiley-India
- 3. **GREENBERG**, Advanced Engineering Mathematics, 2nd edition, Pearson edn
- 4. **DEAN G. DUFFY,** Advanced engineering mathematics with MATLAB, CRC Press
- 5. **PETER O'NEIL**, advanced Engineering Mathematics, Cengage Learning.

Subject	ABET Learning	ABET Internal	JNTUK External	Remarks
Category	Objectives	Assessments	Evaluation	
Category Theory Design Analysis Algorithms Drawing Others	 a) Apply knowledge of math, science, & engineering b) Design & conduct experiments, analyze & interpret data c) Design a system/proces s to meet desired needs within economic, social, political, ethical, health/safety, manufacturabi lity, & sustainability constraints d) Function on multidisciplin ary teams e) Identify, formulate, & solve engineering problems f) Understand professional & ethical responsibilitie s g) Communicate effectively h) Understand impact of engineering 	 Assessments Objective tests Essay questions tests Peer tutoring based Simulation based Design oriented Problem based Experiential (project based) based Lab work or field work based Presentation based Case Studies based Role-play based Portfolio based 	 A. Questions should have: B. Definitions, Principle of operation or philosophy of concept. C. Mathematical treatment, derivations, analysis, synthesis, numerical problems with inference. D. Design oriented problems E. Trouble shooting type of questions F. Applications related questions G. Brain storming questions 	

	solutions in global, economic, environmenta, & societal context		
i)	Recognize need for & be able to engage in lifelong learning		
j)	Know contemporary issues		
k) Use techniques, skills, modern tools for engineering practices		

26

T P C 3+1 0 3

MATHEMATICS – II (MATHEMATICAL METHODS) (Common to All Brancher)

(Common to All Branches)

UNIT I Solution of Algebraic and Transcendental Equations:

Introduction- Bisection Method – Method of False Position – Iteration Method – Newton-Raphson Method (One variable and Simultaneous Equestions)

Subject Category

ABET Learning Objectives a e k

ABET internal assessments 1246

JNTUK External Evaluation A B E

UNIT II Interpolation:

Introduction- Errors in Polynomial Interpolation – Finite differences-Forward Differences- Backward differences –Central differences – Symbolic relations and separation of symbols-Differences of a polynomial-Newton's formulae for interpolation – Interpolation with unevenly spaced points -Lagrange's Interpolation formula

Subject Category

ABET Learning Objectives a e

ABET internal assessments 1246

JNTUK External Evaluation A B E

UNIT III Numerical solution of Ordinary Differential equations:

Solution by Taylor's series-Picard's Method of successive Approximations-Euler's Method-Runge-Kutta Methods

Subject Category

ABET Learning Objectives a e

ABET internal assessments 1246

JNTUK External Evaluation A B E

UNIT IV Fourier Series:

Introduction- Determination of Fourier coefficients – even and odd functions –change of interval– Half-range sine and cosine series

application: Amplitude, spectrum of a periodic function

Subject Category

ABET Learning Objectives a e d

ABET internal assessments 126

JNTUK External Evaluation A B E

UNIT V Fourier Transforms:

Fourier integral theorem (only statement) – Fourier sine and cosine integrals - sine and cosine transforms – properties – inverse transforms – Finite Fourier transforms

Subject Category

ABET Learning Objectives a d e k

ABET internal assessments 126

JNTUK External Evaluation A B E

UNIT VI Z-transform:

Introduction– properties – Damping rule – Shifting rule – Initial and final value theorems -Inverse z transform- -Convolution theorem – Solution of difference equation by Z -transforms.

Subject Category

ABET Learning Objectives a b e k

ABET internal assessments 126

JNTUK External Evaluation A B E

BOOKS:

- 1. **B.S. GREWAL,** Higher Engineering Mathematics, 42nd Edition, Khanna Publishers
- 2. **DEAN G. DUFFY,** Advanced Engineering Mathematics with MATLAB, CRC Press
- 3. **V.RAVINDRANATH and P. VIJAYALAXMI,** Mathematical Methods, Himalaya Publishing House
- ERWYN KREYSZIG, Advanced Engineering Mathematics, 9th Edition, Wiley-India

Subject Category	ABET Learning Objectives	ABET Internal Assessments	JNTUK External Evaluation	Remar ks
Theory Design Analysis Algorith ms Drawing Others	 a) Apply knowledge of math, science, & engineering b) Design & conduct experiments , analyze & interpret data c) Design a system/proc ess to meet desired needs within economic, social, political, ethical, health/safet y, manufactur ability, & sustainabilit y constraints d) Function on multidiscipl inary teams e) Identify, formulate, & solve engineering problems f) Understand professional & ethical responsibilit ies 	 Objective tests Essay questions tests Peer tutoring based Simulation based Design oriented Problem based Experiential (project based) based Lab work or field work based Presentation based Case Studies based Role-play based Portfolio based 	 A. Questions should have: B. Definitions, Principle of operation or philosophy of concept. C. Mathematic al treatment, derivations, analysis, synthesis, numerical problems with inference. D. Design oriented problems E. Trouble shooting type of questions F. Application s related questions G. Brain storming questions 	

g)	Communica te effectively		
h)	Understand impact of engineering solutions in global, economic, environmen ta, & societal context		
i)	Recognize need for & be able to engage in lifelong learning		
j)	Know contempora ry issues		
k)	Use techniques, skills, modern tools for engineering		
	practices		

30

T P C 3+1 0 3

ENGINEERING PHYSICS

UNIT-I

PHYSICAL OPTICS FOR INSTRUMENTS

"Objective Designing an instrument and enhancing the resolution for its operation would be effective as achieved through study of applicational aspects of physical Optics"

INTERFACE : Introduction – Interference in thin films by reflection – Newton's rings.

DIFFRACTION : Introduction – Fraunhofer diffraction - Fraunhofer diffraction at double slit (qualitative) – Diffraction grating – Grating spectrum – Resolving power of a grating – Rayleigh's criterion for resolving power.

POLARIZATION : Introduction – Types of Polarization – Double refraction – Quarter wave plate ad Half Wave plate.

UNIT-II

COHERENT OPTICS – COMMUNICATIONS AND STRUCTURE OF MATERIALS

Objectives while lasers are trusted Non-linear coherent sources established for the fitness of instrumentation, establishing a structure property relationship for materials requires allotment of an equivalent footing in convening the physics knowledge base.

LASERS: Introduction – coherent sources – Characteristics of lasers – Spontaneous and Stimulated emission of radiation – Einstein's coefficients – Population inversion – Three and Four level pumping schemes – Ruby laser – Helium Neon laser.

FIBER OPTICS : Introduction – Principle of Optical Fiber – Acceptance angle and acceptance cone – Numerical aperture.

CRYSTALLOGRAPHY : Introduction – Space lattice – Basis – Unit Cell – Lattice parameters – Bravais lattices – Crystal systems – Structures and packing fractions of SC,BCC and FCC

X-RAY DIFFRACTION TECHNIQUES : Directions and planes in crystals – Miller indices – Separation between successive [h k l] planes – Bragg's law.

UNIT-III

MAGNETIC, ELECTRIC FIELD RESPONSE OF MATERIALS & SUPERCONDUCTIVITY

Objective: Many of the Electrical or Electronic gadgets are designed basing on the response of naturally abundant and artificially made materials, while their response to E- or H- fields controls their performance.

MAGNETIC PROPERTIES : Magnetic permeability – Magnetization – Organ or magnetic moment – Classification of Magnetic materials – Dir, para, Ferro, anti ferro and ferri-magnetism – Hysteresis curve

DIELECTRIC PROPERTIES : Introduction – Dielectric constant – Electronic, ionic and orientational polarization – internal fields – Clausius – Mossotti equation – Dielectric loss, Breakdown and Strength.

SUPERCONDUCTIVITY : General properties – Meissner effect – Type I and Type II superconductors – BCS Theory Flux quantization London's equations – Penetration depth – DC and AC Josephson effects – SQUIDS.

UNIT – IV

ACOUSTICS AND EM – FIELDS:

Objective: The utility and nuances of ever pervading SHM and its consequences would be the first hand-on to as it clearly conveyed through the detailed studies of Acoustics of Buildings, while vectorial concepts of EM fields paves the student to gear – up for a deeper understanding.

ACOUSTICS: Sound absorption, absorption coefficient and its measurements, Reverberations time – Sabine's formula, Eyring's formula.

ELECTRO-MAGNETIC FIELDS: Gauss and stokes theorems (qualitative) – Fundamental laws of electromagnetism – Maxwell's Electromagnetic Equations (Calculus approach).

UNIT – V

QUANTUM MECHANICS FOR ELECTRONIC TRANSPORT

Objective: The discrepancy between classical estimates and laboratory observations of physical properties exhibited by materials would be lifted out through the understanding quantum picture of sub-atomic world dominated by electron and its presence.

QUANTUM MECHANICS: Introduction to matter waves – Schrodinger Time Independent and Time Dependent wave equations – Particle in a box.

FREE ELECTRON THEORY: Classical free electron theory – electrical conductivity – Mean free path – Relaxation time and drifty velocity – Quantum free electron theory – Fermi – Dirac (analytical) and its dependence

on temperature – Fermi energy – density of states – derivations for current density.

BAND THEORY OF SOLIDS: Bloch theorem (qualitative) – Kronig – Penney model – Origin of energy band formation in solids – Classification of materials into conductors, semi – conductors & insulators – Concepts of effective mass of electron - concept of hole.

$\mathbf{UNIT} - \mathbf{VI}$

SEMICONDUCTOR PHYSICS:

Objective: In the wake of ever increasing demand for the space and power the watch word "small is beautiful", understanding the physics of electronic transport as underlying mechanism for appliances would provide a knowledge base.

Introduction – Intrinsic semiconductor and carrier concentration – Equation for conductivity – Extrinsic semiconductor and carrier concentration – Drift and diffusion – Einstein's equation – Hall Effect – direct & indirect band gap semiconductors – Electronic transport Mechanism for LEDs, Photo conductors and solar cells.

TEXT BOOKS

- 1. Solid state Physics by A.J. Dekker (Mc Millan India Ltd.).
- 2. A text book of Engineering Physics by M.N. Avadhanulu & P.G. Kshirasagar (S. Chand publications).
- 3. Engineering Physics b; y M.R. Srinivasan (New Age international publishers).

REFERENCE BOOKS

- 1. 'Introduction to solid state physics' by Charles Kittle (Willey India Pvt. Ltd).
- 2. 'Applied Physics' by T. Bhimasenkaram (BSP BH Publications)
- 3. 'Applied Physics' by M.Arumugam (Anuradha Agencies)
- 4. 'Engineering Physics' by Palanisamy (Scitech Publishers)
- 5. 'Engineering Physics' by D.K.Bhattacharya (Oxford University press).
- 6. 'Engineering Physics' by Mani Naidu S (Pearson Publications)
- 7. 'Engineering Physics' by Sanjay D Jain and Girish G Sahasrabudhe (University Press).
- 8. 'Engineering Physics' by B.K.Pandey & S. Chaturvedi (Cengage Learning).

T P C 3+1 0 3

Professional Ethics and Human Values

UNIT I: Human Values:

Morals, Values and Ethics – Integrity – Work Ethics – Service Learning – Civic Virtue – Respect for others – Living Peacefully – Caring – Sharing – Honesty –Courage – Value time – Co-operation – Commitment – Empathy – Self-confidence – Spirituality- Character.

UNIT II : Engineering Ethics:

The History of Ethics-Purposes for Engineering Ethics-Engineering Ethics-Consensus and Controversy –Professional and Professionalism –Professional Roles to be played by an Engineer –Self Interest, Customs and Religion-Uses of Ethical Theories-Professional Ethics-Types of Inquiry – Engineering and Ethics-Kohlberg's Theory – Gilligan's Argument –Heinz's Dilemma.

UNIT III : Engineering as Social Experimentation:

Comparison with Standard Experiments – Knowledge gained – Conscientiousness – Relevant Information – Learning from the Past – Engineers as Managers, Consultants, and Leaders – Accountability – Role of Codes – Codes and Experimental Nature of Engineering.

UNIT IV : Engineers' Responsibility for Safety and Risk:

Safety and Risk, Concept of Safety – Types of Risks – Voluntary v/s Involuntary Risk- Short term v/s Long term Consequences- Expected Probability- Reversible Effects- Threshold Levels for Risk- Delayed v/s Immediate Risk- Safety and the Engineer – Designing for Safety – Risk-Benefit Analysis-Accidents.

UNIT V: Engineers' Responsibilities and Rights:

Collegiality-Techniques for Achieving Collegiality –Two Senses of Loyaltyobligations of Loyalty-misguided Loyalty – professionalism and Loyalty-Professional Rights –Professional Responsibilities – confidential and proprietary information-Conflict of Interest-solving conflict problems – Selfinterest, Customs and Religion- Ethical egoism-Collective bargaining-Confidentiality-Acceptance of Bribes/Gifts-when is a Gift and a Bribeexamples of Gifts v/s Bribes-problem solving-interests in other companies-Occupational Crimes-industrial espionage-price fixing-endangering lives-Whistle Blowing-types of whistle blowing-when should it be attemptedpreventing whistle blowing.

UNIT VI: Global Issues:

Globalization- Cross-culture Issues-Environmental Ethics-Computer Ethicscomputers as the instrument of Unethical behaviour-computers as the object of Unethical Acts-autonomous computers-computer codes of Ethics-Weapons Development-Ethics and Research-Analysing Ethical Problems in Research-Intellectual Property Rights.

Text Books:

- 1. "Engineering Ethics and Human Values" by M.Govindarajan, S.Natarajan and V.S.SenthilKumar-PHI Learning Pvt. Ltd-2009.
- 2. "Professional Ethics and Morals" by Prof.A.R.Aryasri, Dharanikota Suyodhana-Maruthi Publications.
- 3. "Professional Ethics and Human Values" by A.Alavudeen, R.Kalil Rahman and M.Jayakumaran- Laxmi Publications.
- 4. "Professional Ethics and Human Values" by Prof. D.R. Kiran.
- 5. "Indian Culture, Values and Professional Ethics" by PSR Murthy-BS Publication.
- 6. "Ethics in Engineering" by Mike W. Martin and Roland Schinzinger – Tata McGraw-Hill – 2003.
- 7. "Engineering Ethics" by Harris, Pritchard and Rabins, CENGAGE Learning, India Edition, 2009.

T P C 3+1 0 3

ENGINEERING DRAWING

Objective: Engineering drawing being the principle method of communication for engineers, the objective to introduce the students, the techniques of constructing the various types of polygons, curves and scales. The objective is also to visualize and represent the 3D objects in 2D planes with proper dimensioning, scaling etc.

UNIT I

Objective: The objective is to introduce the use and the application of drawing instruments and to make the students construct the polygons, curves and various types of scales. The student will be able to understand the need to enlarge or reduce the size of objects in representing them.

Polygons, Construction of regular polygons using given length of a side; Ellipse, arcs of circles and Oblong methods; Scales – Vernier and Diagonal scales.

UNIT II

Objective: The objective is to introduce orthographic projections and to project the points and lines parallel to one plane and inclined to other.

Introduction to orthographic projections; projections of points; projections of straight lines parallel to both the planes; projections of straight lines – parallel to one plane and inclined to the other plane.

UNIT III

Objective: The objective is to make the students draw the projections of the lines inclined to both the planes.

Projections of straight lines inclined to both the planes, determination of true lengths, angle of inclinations and traces.

UNIT IV

Objective: The objective is to make the students draw the projections of the plane inclined to both the planes.

Projections of planes: regular planes perpendicular/parallel to one plane and inclined to the other reference plane; inclined to both the reference planes.

UNIT V

Objective: The objective is to make the students draw the projections of the various types of solids in different positions inclined to one of the planes. Projections of Solids – Prisms, Pyramids, Cones and Cylinders with the axis

inclined to one of the planes.

UNIT VI

Objective: The objective is to represent the object in 3D view through isometric views. The student will be able to represent and convert the isometric view to orthographic view and vice versa.

Conversion of isometric views to orthographic views; Conversion of orthographic views to isometric views.

TEXT BOOKS:

- 1. Engineering Drawing by N.D. Butt, Chariot Publications
- 2. Engineering Drawing by K.L.Narayana & P. Kannaiah, Scitech Publishers.
- 3. Engineering Graphics by PI Varghese, McGrawHill Publishers

REFERENCE BOOKS:

- 1. Engineering Graphics for Degree by K.C. John, PHI Publishers
- 2. Engineering Drawing by Agarwal & Agarwal, Tata McGraw Hill Publishers.
- 3. Engineering Drawing + AutoCad K Venugopal, V. Prabhu Raja, New Age.

I Year – I SEMESTER T P C 0 3 2

ENGLISH - COMMUNICATION SKILLS LAB - I

Suggested Lab Manuals:

OBJECTIVE: To impart to the learner the skills of grammar as well as communication through listening, speaking, reading, and writing including soft, that is life skills.

BASIC COMMUNICATION SKILLS

UNIT 1	A. Greeting and Introductions B. Pure Vowels
UNIT 2	A. Asking for information and Requests B. Diphthongs
UNIT 3	A. Invitations B. Consonants
UNIT 4	A. Commands and Instructions B. Accent and Rhythm
UNIT 5	A. Suggestions and Opinions B. Intonation

Text Book:

'Strengthen your Communication Skills' Part-A by Maruthi Publications

Reference Books:

- 1. INFOTECH English (Maruthi Publications)
- 2. Personality Development and Soft Skills (Oxford University Press, New Delhi).

ENGINEERING PHYSICS LAB

List of Experiments

- 1. Determination of wavelength of a source-Diffraction Grating-Normal incidence
- 2. Newton's rings Radius of Curvature of Plano_Convex Lens.
- 3. Determination of thickness of a thin object using parallel interference fringes.
- 4. Determination of Rigidity modulus of a material-Torsional Pendulum.
- 5. Determination of Acceleration due to Gravity and Radius of Gyration- Compound Pendulum.
- 6. Melde's experiment Transverse and Longitudinal modes.
- 7. Verification of laws of stretched string Sonometer.
- 8. Determination of velocity of sound Volume resonator.
- 9. L C R Senes Resonance Circuit
- 10. Study of I/V Characteristics of Semiconductor diode
- 11. I/V characteristics of Zener diode
- 12. Thermistor characteristics Temperature Coefficient
- 13. Magnetic field along the axis of a current carrying coil Stewart and Gee's apparatus.
- 14. Energy Band gap of a Semiconductor p.n junction.
- 15. Hall Effect for semiconductor.

REFERENCE:

- 1. Engineering Physics Lab Manual by Dr. Y. Aparna & Dr. K.Venkateswarao (V.G.S.Book links).
- 2. Physics practical manual, Lorven Publications.

С

2

Т

A

Р

3

T P C 0 2 0

Engineering Physics Virtual Labs - Assignments

List of Experiments

- 1. Hall Effect
- 2. Crystal Structure
- 3. Hysteresis
- 4. Brewster's angle
- 5. Magnetic Levitation / SQUID
- 6. Numerical Aperture of Optical fiber
- 7. Photoelectric Effect
- 8. Simple Harmonic Motion
- 9. Damped Harmonic Motion
- 10. LASER Beam Divergence and Spot size

URL : WWW.vlab.co.in

T P C 0 3 2

ENGINEERING WORKSHOP & IT WORKSHOP

ENGINEERING WORKSHOP:

Course Objective: To impart hands-on practice on basic engineering trades and skills.

Note: At least two exercises to be done from each trade.

Trade:

Carpentry	 T-Lap Joint Cross Lap Joint Dovetail Joint Mortise and Tennon Joint
Fitting	 Vee Fit Square Fit Half Round Fit Dovetail Fit
Black Smithy	 Round rod to Square S-Hook Round Rod to Flat Ring Round Rod to Square headed bolt
House Wiring	 Parallel / Series Connection of three bulbs Stair Case wiring Florescent Lamp Fitting Measurement of Earth Resistance
Tin Smithy	 Taper Tray Square Box without lid Open Scoop Funnel

IT WORKSHOP:

Objectives: Enabling the student to understand basic hardware and software tools through practical exposure.

PC Ha6rdware:

Identification of basic peripherals, assembling a PC, installation of system software like MS Windows, device drivers. Troubleshooting Hardware and software _ some tips and tricks.

Internet & World Wide Web:

Different ways of hooking the PC on to the internet from home and workplace and effectively usage of the internet, web browsers, email, newsgroups and discussion forums .Awareness of cyber hygiene(protecting the personal computer from getting infected with the viruses), worms and other cyber attacks.

Productivity tools Crafting professional word documents; excel spread sheets, power point presentations and personal web sites using the Microsoft suite of office tools .

(Note: Student should be thoroughly exposed to minimum of 12 Tasks)

PC Hardware

Task 1: Identification of the peripherals of a computer.

To prepare a report containing the block diagram of the CPU along with the configuration of each peripheral and its functions. Description of various I/O Devices

Task 2 (Optional) : A practice on disassembling the components of a PC and assembling them to back to working condition.

Task 3: Examples of Operating systems- DOS, MS Windows, Installation of MS windows on a PC.

Task 4: Introduction to Memory and Storage Devices , I/O Port, Device Drivers, Assemblers, Compilers, Interpreters , Linkers, Loaders.

Task 5:

Hardware Troubleshooting (Demonstration):

Identification of a problem and fixing a defective PC (improper assembly or defective peripherals).

Software Troubleshooting (Demonstration): Identification of a problem and fixing the PC for any software issues.

Internet & Networking Infrastructure

Task 6: Demonstrating Importance of Networking, Transmission Media, Networking Devices- Gateway, Routers, Hub, Bridge, NIC ,Bluetooth Technology, Wireless Technology, Modem, DSL, Dialup Connection.

Orientation & Connectivity Boot Camp and web browsing: Students are trained to configure the network settings to connect to the Internet. They are trained to demonstrate the same through web browsing (including all tool bar options) and email access.

Task 7: Search Engines & Netiquette:

Students are enabled to use search engines for simple search, academic search and any other context based search (Bing, Google etc). Students are

acquainted to the principles of micro-blogging, wiki, collaboration using social networks, participating in online technology forums

Task 8: Cyber Hygiene (Demonstration): Awareness of various threats on the internet. Importance of security patch updates and anti-virus solutions. Ethical Hacking, Firewalls, Multi-factor authentication techniques including Smartcard, Biometrics are also practiced.

Word

Task 9 : MS Word Orientation:

Accessing, overview of toolbars, saving files, Using help and resources, rulers, formatting, Drop Cap, Applying Text effects, Using Character Spacing, OLE in Word, using templates, Borders and Colors, Inserting Header and Footer, Using Date and Time option, security features in word, converting documents while saving.

Task 10: Creating project : Abstract Features to be covered:-Formatting Styles, Inserting table, Bullets and Numbering, Changing Text Direction, Cell alignment, Footnote, Hyperlink, Symbols, Spell Check, Track Changes, Images from files and clipart, Drawing toolbar and Word Art, Formatting Images, Textboxes and Paragraphs.

Excel

Task 11: Using spread sheet features of EXCEL including the macros, formulae, pivot tables, graphical representations.

Creating a Scheduler - Features to be covered:- Gridlines, Format Cells, Summation, auto fill, Formatting Text.

LOOKUP/VLOOKUP

Task 12: Performance Analysis - Features to be covered:- Split cells, freeze panes, group and outline, Sorting, Boolean and logical operators, Conditional formatting.

Power Point

Task 13: Students will be working on basic power point utilities and tools which help them create basic power point presentation. Topic covered during this week includes :- PPT Orientation, Slide Layouts, Inserting Text, Word Art, Formatting Text, Bullets and Numbering, Auto Shapes, Lines and Arrows, Hyperlinks, Inserting –Images, Clip Art, Tables and Charts in Powerpoint.

Task 14: Focusing on the power and potential of Microsoft power point. Helps them learn best practices in designing and preparing power point presentation. Topic covered during this week includes: - Master Layouts (slide, template, and notes), Types of views (basic, presentation, slide slotter, notes etc), Inserting – Background, textures, Design Templates, Hidden slides, OLE in PPT.

TEXT BOOK:

Faculty to consolidate the workshop manuals using the following references

- 1. Computer Fundamentals, Anita Goel, Pearson
- 2. Scott Mueller's Upgrading and Repairing PCs, 18/e, Scott. Mueller, QUE, Pearson,2008
- 3. Information Technology Workshop,3e, G Praveen Babu, M V Narayana BS Publications.
- 4. Comdex Information Technology, Vikas Gupta, dreamtech.

REFERENCE BOOK:

- 1. Essential Computer and IT Fundamentals for Engineering and Science Students, Dr. N.B. Venkateswarlu.
- 2. PC Hardware trouble shooting made easy, TMH.

T P C 3+1 0 3

ENGLISH –II (Common to All Branches)

DETAILED TEXT-II : Sure Outcomes: English for Engineers and Technologists **Recommended Topics :**

1. TECHNOLOGY WITH A HUMAN FACE

<u>OBJECTIVE</u>: To make the learner understand how modern life has been shaped by technology.

<u>OUTCOME</u>: The proposed technology is people's technology. It serves the human person instead of making him the servant of machines.

2. CLIMATE CHANGE AND HUMAN STRATEGY

<u>OBJECTIVE</u>: To make the learner understand how the unequal heating of earth's surface by the Sun, an atmospheric circulation pattern is developed and maintained.

<u>OUTCOME</u>: The learner's understand that climate must be preserved.

3. EMERGING TECHNOLOGIES

<u>**OBJECTIVE**</u>: To introduce the technologies of the 20^{th} century and 21^{st} centuries to the learners.

<u>OUTCOME</u>: The learner will adopt the applications of modern technologies such as nanotechnology.

4. WATER- THE ELIXIR OF LIFE

<u>OBJECTIVE</u>: To inform the learner of the various advantages and characteristics of water.

<u>OUTCOME</u>: The learners will understand that water is the elixir of life.

5. THE SECRET OF WORK

<u>OBJECTIVE</u>: In this lesson, Swami Vivekananda highlights the importance of work for any development.

<u>OUTCOME</u>: The students will learn to work hard with devotion and dedication.

6. WORK BRINGS SOLACE

<u>OBJECTIVE</u>: In this lesson Abdul Kalam highlights the advantage of work.

<u>OUTCOME</u>: The students will understand the advantages of work. They will overcome their personal problems and address themselves to national and other problems. Text Book : 'Sure Outcomes' by Orient Black Swan Pvt. Ltd. Publishers

NON-DETAILED TEXT:

(From Modern Trailblazers of Orient Blackswan) (Common single Text book for two semesters) (Semester I (1 to 4 lessons) / Semester II (5 to 8 lessons)

5. J.C. Bose

OBJECTIVE: To apprise of J.C.Bose's original contributions.

OUTCOME: The learner will be inspired by Bose's achievements so that he may start his own original work.

6. Homi Jehangir Bhaba

OBJECTIVE: To show Bhabha as the originator of nuclear experiments in India.

OUTCOME: The learner will be inspired by Bhabha's achievements so as to make his own experiments.

7. Vikram Sarabhai

OBJECTIVE: To inform the learner of the pioneering experiments conducted by Sarabhai in nuclear energy and relevance of space programmes.

OUTCOME: The learner will realize that development is impossible without scientific research.

8. A Shadow- R.K.Narayan

OBJECTIVE: To expose the reader to the pleasure of the humorous story

OUTCOME: The learner will be in a position to appreciate the art of writing a short story and try his hand at it.

Text Book : 'Trail Blazers' by Orient Black Swan Pvt. Ltd. Publishers

MATHEMATICS – III (LINEAR ALGEBRA & VECTOR CALCULUS) (Common to All Branches)

UNIT I Linear systems of equations:

Rank-Echelon form, Normal form – Solution of Linear Systems – Direct Methods- Gauss Elimination - Gauss Jordon and Gauss Seidal Methods.

Application: Finding the current in a electrical circuit.

Subject Category

ABET Learning Objectives a e k

ABET internal assessments 1264

JNTUK External Evaluation A B E

UNIT II Eigen values - Eigen vectors and Quadratic forms:

Eigen values - Eigen vectors- Properties - Cayley-Hamilton Theorem -Inverse and powers of a matrix by using Cayley-Hamilton theorem-Quadratic forms- Reduction of quadratic form to canonical form - Rank -Positive, negative definite - semi definite - index - signature.

Application: Free vibration of a two-mass system.

Subject Category

ABET Learning Objectives a d e k

ABET internal assessments 1246

JNTUK External Evaluation A B E

UNIT III Multiple integrals:

Review concepts of Curve tracing (Cartesian - Polar and Parametric curves).

Applications of Integration to Lengths, Volumes and Surface areas of revolution in Cartesian and Polar Coordinates.

Multiple integrals - double and triple integrals - change of variables -

Change of order of Integration

Application: Moments of inertia

Subject Category

ABET Learning Objectives a e d

ABET internal assessments 126

JNTUK External Evaluation A B E

3

P C

3+1 0

Т

UNIT IV Special functions:

Beta and Gamma functions- Properties - Relation between Beta and Gamma functions- Evaluation of improper integrals.

Application: Evaluation of integrals

Subject Category

ABET Learning Objectives a e

ABET internal assessments 126

JNTUK External Evaluation A B E

UNIT V Vector Differentiation:

Gradient- Divergence- Curl - Laplacian and second order operators -Vector identities.

Application: Equation of continuity, potential surfaces

Subject Category

ABET Learning Objectives a e

ABET internal assessments 126

JNTUK External Evaluation A B E

UNIT VI Vector Integration:

Line integral – work done – Potential function – area- surface and volume integrals Vector integral theorems: Greens, Stokes and Gauss Divergence Theorems (Without proof) and related problems.

application: work done, Force

Subject Category

ABET Learning Objectives a e

ABET internal assessments 126

JNTUK External Evaluation A B E

BOOKS:

- 1. **GREENBERG**, Advanced Engineering Mathematics, 9th Edition, Wiley-India.
- 2. **B.V. RAMANA,** Higher Engineering Mathematics, Tata Mc Grawhill.
- 3. **ERWIN KREYSZIG,** Advanced Engineering Mathematics, 9th Edition, Wiley-India.
- 4. **PETER O'NEIL**, Advanced Engineering Mathematics, Cengage Learning.
- 5. **D.W. JORDAN AND T. SMITH,** Mathematical Techniques, Oxford University Press.

Subject	ABET Learning	ABET Internal	JNTUK External	Remarks
Category	Objectives	Assessments	Evaluation	
Theory Design Analysis Algorithms Drawing Others	 a) Apply knowledge of math, science, & engineering b) Design & conduct experiments, analyze & interpret data c) Design a system/process to meet desired needs within economic, social, political, ethical, health/safety, manufacturabili ity, & sustainability constraints d) Function on multidisciplina ry teams e) Identify, formulate, & solve engineering problems f) Understand professional & ethical responsibilities g) Communicate effectively h) Understand impact of engineering solutions in global, 	 Objective tests Essay questions tests Peer tutoring based Simulation based Design oriented Problem based Experiential (project based) based Lab work or field work based Presentation based Case Studies based Role-play based Portfolio based 	 A. Questions should have: B. Definitions, Principle of operation or philosophy of concept. C. Mathematical treatment, derivations, analysis, synthesis, numerical problems with inference. D. Design oriented problems E. Trouble shooting type of questions F. Applications related questions G. Brain storming questions 	

economic, environmental, & societal context		
i) Recognize need for & be able to engage in lifelong learning		
j) Know contemporary issues		
 k) Use techniques, skills, modern tools for engineering practices 		

50

T P C 3+1 0 3

ENGINEERING CHEMISTRY

UNIT-I: WATER TECHNOLOGY

Hard Water – Estimation of hardness by EDTA method – Potable water-Sterilization and Disinfection – Boiler feed water – Boiler troubles – Priming and foaming , scale formation, corrosion, caustic embrittlement, turbine deposits – Softening of water – Lime soda, Zeolite processes – Reverse osmosis – Electro Dialysis, Ion exchange process.

Objectives : For prospective engineers knowledge about water used in industries (boilers etc.) and for drinking purposes is useful; hence chemistry of hard water, boiler troubles and modern methods of softening hard water is introduced.

UNIT-II: ELECTROCHEMISTRY

Concept of Ionic conductance – Ionic Mobilities – Applications of Kohlrausch law – Conductometric titrations – Galvanic cells – Electrode potentials – Nernst equation – Electrochemical series – Potentiometric titrations – Concentration cells – Ion selective electrode –Glass electrodes – Fluoride electrode; Batteries and Fuel cells.

Objectives : Knowledge of galvanic cells, electrode potentials, concentration cells is necessary for engineers to understand corrosion problem and its control ; also this knowledge helps in understanding modern bio-sensors, fuel cells and improve them.

UNIT-III : CORROSION

Causes and effects of corrosion – theories of corrosion (dry, chemical and electrochemical corrosion) – Factors affecting corrosion – Corrosion control methods – Cathodic protection –Sacrificial Anodic, Impressed current methods – Surface coatings – Methods of application on metals (Hot dipping, Galvanizing, tinning, Cladding, Electroplating, Electroless plating) – Organic surface coatings – Paints – Their constituents and their functions.

Objectives : the problems associated with corrosion are well known and the engineers must be aware of these problems and also how to counter them

UNIT-IV : HIGH POLYMERS

Types of Polymerization – Stereo regular Polymers – Physical and Mechanical properties of polymers – Plastics – Thermoplastics and thermo setting plastics – Compounding and Fabrication of plastics – Preparation and properties of Polyethylene, PVC and Bakelite – Elastomers – Rubber and Vulcanization – Synthetic rubbers – Styrene butadiene rubber – Thiokol – applications.

Objectives : Plastics are materials used very widely as engineering materials. An understanding of properties particularly physical and mechanical properties of polymers / plastics / elastomers helps in selecting suitable materials for different purposes.

UNIT-V: FUELS

Coal – Proximate and ultimate analysis – Numerical problems based on analysis – Calorific vaule – HCV and LCV – Problems based on calorific values; petroleum – Refining – Cracking – Petrol – Diesel knocking; Gaseous fuels – Natural gas – LPG, CNG – Combustion – Problems on air requirements.

Objectives : A board understanding of the more important fuels employed on a large scale is necessary for all engineer to understand energy – related problems and solve them.

UNIT-VI: CHEMISTRY OF ADVANCED MATERIALS

Nanometerials (Preparation of carbon nanotubes and fullerenes – Properties of nanomaterials – Engineering applications) – Liquid crystals (Types – Application in LCD and Engineering Applications) – Fiber reinforced plastics – Biodegradable polymers – Conducting polymers – Solar cells (Solar heaters – Photo voltaic cells – Solar reflectors – Green house concepts – Green chemistry (Methods for green synthesis and Applications) – Cement – Hardening and setting – Deterioration of cement concrete.

Objectives : With the knowledge available now, future engineers should know at least some of the advanced materials that are becoming available. Hence some of them are introduced here.

TEXT BOOKSS

- 1. Jain and Jain (Latest Edition), Engineering Chemistry, Dhanpat Rai Publishing company Ltd.
- 2. N.Y.S.Murthy, V.Anuradha, KRamaRao "A Text Book of Engineering Chemistry", Maruthi Publications.
- 3. C.Parameswara Murthy, C.V.Agarwal, Adhra Naidu (2006) Text Book of Engineering Chemistry, B.S. Publications.
- 4. B.Sivasankar (2010), Engineering Chemistry, Mc Graw-Hill companies.
- 5. Ch.Venkata Ramana Reddy and Ramadevi (2013), Engineering Chemistry, Cengage Learning.

REFERENCES

- 1. S.S. Dara (2013) Text Book of Engineering Chemistry, S.Chand Technical Series.
- 2. K.Sesha Maheswaramma and Mridula Chugh (2013), Engineering Chemistry, Pearson Publications.
- 3. R.Gopalan, D.Venkatappayya, Sulochana Nagarajan (2011), Text Book of Engineering Chemistry, Vikas Publications.
- 4. B.Viswanathan and M.Aulice Scibioh (2009), Fuel Cells, Principals and applications, University Press.

T P C 3+1 0 3

ENGINEERING MECHANICS

Objectives: The students completing this course are expected to understand the concepts of forces and its resolution in different planes ,resultant of force system, Forces acting on a body, their free body diagrams using graphical methods. They are required to understand the concepts of centre of gravity and moments of inertia and their application, Analysis of frames and trusses, different types of motion, friction and application of work - energy method.

UNIT – I

Objectives: The students are to be exposed to the concepts of force and friction , direction and its application.

Introduction to Engg. Mechanics – Basic Concepts.

Systems of Forces : Coplanar Concurrent Forces – Components in Space – Resultant – Moment of Force and its Application – Couples and Resultant of Force Systems. Introduction, limiting friction and impending motion, coulomb's laws of dry friction, coefficient of friction, cone of friction.

UNIT II

Objectives: The students are to be exposed to application of free body diagrams. Solution to problems using graphical methods and law of triangle of forces.

Equilibrium of Systems of Forces : Free Body Diagrams, Equations of Equilibrium of Coplanar Systems, Spatial Systems for concurrent forces. Lamis Theorm, Graphical method for the equilibrium of coplanar forces, Converse of the law of Triangle of forces, converse of the law of polygon of forces condition of equilibrium.

UNIT – III

Objectives : The students are to be exposed to concepts of centre of gravity.

Centroid : Centroids of simple figures (from basic principles) – Centroids of Composite Figures.

Centre of Gravity : Centre of gravity of simple body (from basis principles), centre of gravity of composite bodies, pappus theorem.

UNIT IV

Objective: The students are to be exposed to concepts of moment of inertia and polar moment of inertia including transfer methods and their applications.

Area moments of Inertia : Definition – Polar Moment of Inertia, Transfer Theorem, Moments of Inertia of Composite Figures, Products of Inertia, Transfer Formula for Product of Inertia. **Mass Moment of Inertia :** Moment of Inertia of Masses, Transfer Formula for Mass Moments of Inertia, mass moment of inertia of composite bodies.

UNIT – V

Objectives : The students are to be exposed to motion in straight line and in curvilinear paths, its velocity and acceleration computation and methods of representing plane motion.

Kinematics : Rectilinear and Curvelinear motions – Velocity and Acceleration – Motion of Rigid Body – Types and their Analysis in Planar Motion. **Kinetics :** Analysis as a Particle and Analysis as a Rigid Body in Translation – Central Force Motion – Equations of Plane Motion – Fixed Axis Rotation – Rolling Bodies.

UNIT – VI

Objectives: The students are to be exposed to concepts of work, energy and particle motion

Work – **Energy Method** : Equations for Translation, Work-Energy Applications to Particle Motion, Connected System-Fixed Axis Rotation and Plane Motion. Impulse momentum method.

TEXT BOOKS:

- 1. Engg. Mechanics S.Timoshenko & D.H.Young., 4th Edn , Mc Graw Hill publications.
- 2. Engineering Mechanics: Statics and Dynamics 3rd edition, Andrew Pytel and Jaan Kiusalaas; Cengage Learning publishers.

REFERENCES:

- 1. Engineering Mechanics statics and dynamics R.C.Hibbeler, 11th Edn Pearson Publ.
- 2. Engineering Mechanics, statics–J.L.Meriam, 6th Edn–Wiley India Pvt Ltd.
- Engineering Mechanics , dynamics J.L.Meriam, 6th Edn Wiley India Pvt. Ltd.
- 4. Engineering Mechanics , statics and dynamics I.H.Shames, Pearson Publ.
- 5. Mechanics For Engineers , statics F.P.Beer & E.R.Johnston 5th Edn Mc Graw Hill Publ.
- 6. Mechanics For Engineers, dynamics F.P. Beer & E.R. Johnston 5th Edn Mc Graw Hill Publ.
- Theory & Problems of engineering mechanics, statics & dynamics E.W.Nelson, C.L.Best & W.G. McLean, 5th Edn – Schaum's outline series - Mc Graw Hill Publ.
- 8. Engineering Mechanics , Fedinand . L. Singer , Harper Collins.
- 9. Engineering Mechanics statics and dynamics , A Nelson, Mc Graw Hill publications.
- 10. Engineering Mechanics, Tayal. Umesh Publ.

T P C 3+1 0 3

COMPUTER PROGRAMMING

Objectives: Formulating algorithmic solutions to problems and implementing algorithms in C.

UNIT I:

Unit objective: Notion of Operation of a CPU, Notion of an algorithm and computational procedure, editing and executing programs in Linux Introduction: Computer systems, Hardware and Software Concepts.

Problem Solving: Algorithm / Pseudo code, flowchart, program development steps, computer languages: machine, symbolic and highlevel languages, Creating and Running Programs: Writing, Editing (vi/emacs editor), Compiling (gcc), Linking and Executing in under Linux.

BASICS OF C: Structure of a C program, identifiers, basic data types and sizes. Constants, Variables, Arthmetic, relational and logical operators, increment and decrement operators, conditional operator, assignment operator, expressions, type conversions, Conditional Expressions, precedence and order of evaluation, Sample Programs.

UNIT II:

Unit objective: understanding branching, iteration and data representation using arrays

SELECTION – MAKING DECISION: TWO WAY SELECTION: if-else, null else, nested if, examples, Multi-way selection: switch, else-if, examples.

ITERATIVE: loops- while, do-while and for statements, break, continue, initialization and updating, event and counter controlled loops, Looping applications: Summation, powers, smallest and largest.

ARRAYS: Arrays- concepts, declaration, definition, accessing elements, storing elements, Strings and String Manipulations, 1-D arrays, 2-D arrays and character arrays, string manipulations, Multidimensional arrays, array applications: Matrix operations, checking the symmetricity of a Matrix.

STRINGS: concepts, c strings.

UNIT III:

Objective: Modular programming and recursive solution formulation

FUNCTIONS- MODULAR PROGRAMMING: functions, basics, parameter passing, storage classes extern, auto, register, static, scope rules, block structure, user defined functions, standard library functions, recursive functions, Recursive solutions for fibonacci series, towers of Hanoi, header

files, C Preprocessor, example c programs, Passing 1-D arrays, 2-D arrays to functions.

UNIT IV:

Objective: Understanding pointers and dynamic memory allocation

POINTERS: pointers- concepts, initialization of pointer variables, pointers and function arguments, passing by address- dangling memory, address arithmetic, character pointers and functions, pointers to pointers, pointers and multi-dimensional arrays, dynamic memory management functions, command line arguments.

UNIT V:

Objective: Understanding miscellaneous aspects of C

ENUMERATED, STRUCTURE AND UNION TYPES: Derived typesstructures- declaration, definition and initialization of structures, accessing structures, nested structures, arrays of structures, structures and functions, pointers to structures, self referential structures, unions, typedef, bit-fields, program applications

BIT-WISE OPERATORS: logical, shift, rotation, masks.

UNIT VI:

Objective: Comprehension of file operations

FILE HANDLING: Input and output- concept of a file, text files and binary files, Formatted I/O, File I/O operations, example programs

Text Books:

- 1. Problem Solving and Program Design in C, Hanly, Koffman, 7th ed, PERSON
- 2. Programming in C, Second Edition Pradip Dey and Manas Ghosh, OXFORD Higher Education .
- 3. Programming in C, A practical approach Ajay Mittal PEARSON
- 4. The C programming Language by Dennis Richie and Brian Kernighan
- 5. Programming in C, B. L. Juneja, Anith Seth, Cengage Learning.

Reference Books and web links:

- 1. C Programming, A Problem Solving Approach, Forouzan, Gilberg, Prasad, CENGAGE.
- 2. Programming with C, Bichkar, Universities Press
- 3. Programming in C, Reema Thareja, OXFORD
- 4. C by Example, Noel Kalicharan, Cambridge

T P C 3+1 0 3

NETWORK ANALYSIS

UNIT – I

Introduction to Electrical Circuits : Network elements classification, Electric charge and current, Electric energy and potential, Resistance parameter – series and parallel combination, Inductance parameter – series and parallel combination, Capacitance parameter – series and parallel combination. Energy sources: Ideal, Non-ideal, Independent and dependent sources, Source transformation, Kirchoff's laws, Mesh analysis and Nodal analysis problem solving with resistances only including dependent sources also. (Text Books: 1,2,3, Reference Books: 3)

A.C Fundamentals and Network Topology: Definitions of terms associated with periodic functions: Time period, Angular velocity and frequency, RMS value, Average value, Form factor and peak factor- problem solving, Phase angle, Phasor representation, Addition and subtraction of phasors, mathematical representation of sinusoidal quantities, explanation with relevant theory, problem solving. Principal of Duality with examples.

Network Topology: Definitions of branch, node, tree, planar, non-planar graph, incidence matrix, basic tie set schedule, basic cut set schedule. (Text Books: 2,3, Reference Books: 3)

UNIT – II

Steady State Analysis of A.C Circuits : Response to sinusoidal excitation pure resistance, pure inductance, pure capacitance, impedance concept, phase angle, series R-L, R-C, R-L-C circuits problem solving. Complex impedance and phasor notation for R-L, R-C, R-L-C problem solving using mesh and nodal analysis, Star-Delta conversion, problem solving. (Text Books: 1,2, Reference Books: 3)

UNIT – III

Coupled Circuits : Coupled Circuits: Self inductance, Mutual inductance, Coefficient of coupling, analysis of coupled circuits, Natural current, Dot rule of coupled circuits, Conductively coupled equivalent circuits- problem solving.

Resonance: Introduction, Definition of Q, Series resonance, Bandwidth of series resonance, Parallel resonance, Condition for maximum impedance, current in anti resonance, Bandwidth of parallel resonance, general case-resistance present in both branches, anti resonance at all frequencies. (Text Books:2,3, Reference Books: 3)

UNIT – IV

Network Theorems: Thevinin's, Norton's, Milliman's, Reciprocity, Compensation, Substitution, Superposition, Max Power Transfer, Tellegensproblem solving using dependent sources also. (Text Books: 1,2,3, Reference Books: 2)

UNIT – V

Two-port networks : Relationship of two port networks, Z-parameters, Yparameters, Transmission line parameters, h-parameters, Inverse hparameters, Inverse Transmission line parameters, Relationship between parameter sets, Parallel connection of two port networks, Cascading of two port networks, series connection of two port networks, problem solving including dependent sources also. (Text Books: 1,2, Reference Books: 1,3)

UNIT – VI

Transients : First order differential equations, Definition of time constants, R-L circuit, R-C circuit with DC excitation, Evaluating initial conditions procedure, second order differential equations, homogeneous, nonhomogenous, problem solving using R-L-C elements with DC excitation and AC excitation, Response as related to s-plane rotation of roots. Solutions using Laplace transform method. (Text Books: 1,2,3, Reference Books: 1,3)

TEXT BOOKS :

- 1. Network Analysis ME Van Valkenburg, Prentice Hall of India, 3rd Edition, 2000.
- 2. Network Analysis by K.Satya Prasad and S Sivanagaraju, Cengage Learning
- 3. Electric Circuit Analysis by Hayt and Kimmarle, TMH

REFERENCES:

- 1. Network lines and Fields by John. D. Ryder 2nd edition, Asia publishing house.
- 2. Basic Circuit Analysis by DR Cunninghan, Jaico Publishers.
- 3. Network Analysis and Filter Design by Chadha, Umesh Publications.

I Year – II SEMESTER

T P C 0 3 2

ENGINEERING CHEMISTRY LABORATORY

List of Experiments

- Introduction to chemistry laboratory Molarity, Normality, Primary, Secondary standard solutions, Volumetric titrations, Quantitative analysis, Quantitative analysis etc.,
- Trial experiment Estimation of HCI using standard Na₂co₃ solutions
- 3. Estimation of KMnO₄ using standard Oxalic acid solution.
- 4. Estimation of Ferric iron using standard $K_2Cr_2O_7$ solution.
- 5. Estimation of Copper using standard $K_2Cr_2O_7$ solution.
- 6. Estimation of Total Hardness water using standard EDTA solution.
- 7. Estimation of Copper using standard EDTA solution.
- 8. Estimation of Copper using Colorimeter
- 9. Estimation of pH of the given sample solution using pH meter.
- 10. Conductometric Titrations between strong acid and strong base
- 11. Conductometric Titrations between strong acid and Weak base
- 12. Potentiometric Titrations between strong acid and strong base
- 13. Potentiometric Titrations between strong acid and Weak base
- 14. Estimatinog of Zinc using standard potassium ferrocyanide solution
- 15. Estimation of Vitamin C

TEXT BOOKSS

- 1. Dr. Jyotsna Cherukuis(2012)Laboratory Manual of Engineering Chemistry-II, VGS Techno Series
- 2. Chemistry Practical Manual, Lorven Publications
- K. Mukkanti (2009) Practical Engineering Chemistry, B.S.Publication.

I Year – II SEMESTER	Т	Р	С
	0	3	2
ENGLISH – COMMUNICATION SKILLS LAB -	- II		

Suggested Lab Manuals:

OBJECTIVE: To impart to the learner the skills of grammar as well as communication through listening, speaking, reading, and writing including soft, that is life skills.

ADVANCED COMMUNICATION SKILLS

UNIT 6	Body language
UNIT 7	Dialogues
UNIT 8	Interviews and Telephonic Interviews
UNIT 9	Group Discussions
UNIT 10	Presentation Skills
UNIT 11	Debates

Text Book:

'Strengthen your Communication Skills' Part-B by Maruthi Publications

Reference Books:

- 1. INFOTECH English (Maruthi Publications)
- 2. Personality Development and Soft Skills (Oxford University Press, New Delhi).

I Year – II SEMESTER

T P C 0 3 2

COMPUTER PROGRAMMING LAB

Exercise l

- a) Write a C Program to calculate the area of triangle using the formula area = $(s (s-a) (s-b)(s-c))^{1/2}$ where s = (a+b+c)/2
- b) Write a C program to find the largest of three numbers using ternary operator.
- c) Write a C Program to swap two numbers without using a temporary variable.

Exercise 2

- a) 2's complement of a number is obtained by scanning it from right to left and complementing all the bits after the first appearance of a 1. Thus 2's complement of 11100 is 00100. Write a C program to find the 2's complement of a binary number.
- b) Write a C program to find the roots of a quadratic equation.
- c) Write a C program, which takes two integer operands and one operator form the user, performs the operation and then prints the result. (Consider the operators +,-,*, /, % and use Switch Statement)

Exercise 3

- a) Write a C program to find the sum of individual digits of a positive integer and find the reverse of the given number.
- b) A Fibonacci sequence is defined as follows: the first and second terms in the sequence are 0 and 1. Subsequent terms are found by adding the preceding two terms in the sequence. Write a C program to generate the first n terms of the sequence.
- c) Write a C program to generate all the prime numbers between 1 and n, where n is a value supplied by the user.

Exercise 4

- a) Write a C Program to print the multiplication table of a given number n up to a given value, where n is entered by the user.
- b) Write a C Program to enter a decimal number, and calculate and display the binary equivalent of that number.
- c) Write a C Program to check whether the given number is Armstrong number or not.

Exercise 5

- a) Write a C program to interchange the largest and smallest numbers in the array.
- b) Write a C program to implement a liner search.
- c) Write a C program to implement binary search.

Exercise 6

- a) Write a C program to implement sorting of an array of elements .
- b) Write a C program to input two m x n matrices, check the compatibility and perform addition and multiplication of them.

Exercise 7

Write a C program that uses functions to perform the following operations:

- i. To insert a sub-string in to given main string from a given position.
- ii. To delete n Characters from a given position in a given string.
- iii. To replace a character of string either from beginning or ending or at a specified location.

Exercise 8

Write a C program that uses functions to perform the following operations using Structure:

- i) Reading a complex number
- ii) Writing a complex number
- iii) Addition of two complex numbers
- iv) Multiplication of two complex numbers

Exercise 9

Write C Programs for the following string operations without using the built in functions

- to concatenate two strings
- to append a string to another string
- to compare two strings

Exercise 10

Write C Programs for the following string operations without using the built in functions

- to find t he length of a string
- to find whether a given string is palindrome or not

Exercise 11

- a) Write a C functions to find both the largest and smallest number of an array of integers.
- b) Write C programs illustrating call by value and call by reference cncepts.

Exercise 12

Write C programs that use both recursive and non-recursive functions for the following

- i) To find the factorial of a given integer.
- ii) To find the GCD (greatest common divisor) of two given integers.
- iii) To find Fibonacci sequence

Exercise 13

- a) Write C Program to reverse a string using pointers
- b) Write a C Program to compare two arrays using pointers

Exercise 14

- a) Write a C program consisting of Pointer based function to exchange value of two integers using passing by address.
- b) Write a C program to swap two numbers using pointers.

Exercise 15

Examples which explores the use of structures, union and other user defined variables.

Exercise 16

- a) Write a C program which copies one file to another.
- b) Write a C program to count the number of characters and number of lines in a file.
- c) Write a C Program to merge two files into a third file. The names of the files must be entered using command line arguments.

II Year – I SEMESTER

T P C 3+1 0 3

MANAGERIAL ECONOMICS AND FINANCIAL ANALYSIS

Unit – I:

(*The Learning objective of this Unit is to understand the concept and nature of Managerial Economic s and its relationship with other disciplines, Concept of Demand and Demand forecasting)

Introduction to Managerial Economics and demand Analysis:

Definition of Managerial Economics and Scope-Managerial Economics and its relation with other subjects-Concepts of Demand-Types-Determents-Law of Demand its Exception-Elasticity of Demand-Types and Measurement-Demand forecasting and its Methods.

(**The Learner is equipped with the knowledge of estimating the Demand for a product and the relationship between Price and Demand).

Unit – II:

(*The Learning objective of this Unit is to understand the concept of Production function, Input Output relationship, different Cost Concepts and Concept of Cost-Volume-Profit Analysis)

Production and Cost Analyses:

Production function-Isoquants and Isocosts-Law of Variable proportions-Cobb-Douglas Production function-Economics of Sale-Cost Concepts-Opportunity Cost-Fixed vs Variable Costs-Explicit Costs vs Implicit Costs-Out of Pocket Costs vs Imputed Costs-Cost Volume Profit analysis-Determination of Break-Even Point (Simple Problem).

(**One should understand the Cost Concepts for decision making and to estimate the least cost combination of inputs).

Unit – III:

(*The Learning Objective of this Unit is t understand the Nature of Competition, Characteristics of Pricing in the different market structure and significance of various pricing methods).

Introduction to Markets, Theories of the Firm & Pricing Policies:

Market Structures: Perfect Competition, Monopoly and Monopolistic and Oligopoly – Features – Price, Output Determination – Managerial Theories of firm: Maris and Williamson's models – Methods of Pricing: Limit Pricing, Market Skimming Pricing, Internet Pricing: Flat Rate Pricing, Usage sensitive, Transaction based pricing, Priority Pricing.

(** One has to understand the nature of different markets and Price Output determination under various market conditions).

Unit – IV:

(*The Learning objective of this Unit is to know the different forms of Business organization and their Merits and Demerits both public & private Enterprises and the concepts of Business Cycles)

Types of Business Organization and Business Cycles:

Features and Evaluation of Sole Trader – Partnership – Joint Stock Company – State/Public Enterprises and their forms – Business Cycles – Meaning and Features – Phases of Business Cycle.

(**One should equipped with the knowledge of different Business Units)

Unit – V:

(*The Learning objective of this Unit is to understand the different Accounting Systems preparation of Financial Statements and uses of different tools for performance evaluation)

Introduction to Accounting & Financing Analysis:

Introduction to Double Entry Systems – Preparation of Financial Statements-Analysis and Interpretation of Financial Statements-Ratio Analysis – Preparation of Funds flow cash flow statements (Simple Problems).

(**The Learner is able to prepare Financial Statements and the usage of various Accounting tools for Analysis).

Unit – VI:

(*The Learning objective of this Unit is to understand the concept of Capital, Capitalization, Capital Budgeting and to know the techniques used to evaluate Capital Budgeting proposals by using different methods).

Capital and Capital Budgeting: Capital Budgeting: Meaning of Capital-Capitalization-Meaning of Capital Budgeting-Need for Capital Budgeting-Trachtional and Modern Methods.

(**The Learner is able to evaluate various investment project proposals with the help of capital budgeting techniques for decision making).

Note : *Learning Objective

** Learning Assessment

TEXT BOOKS :

1. Dr. N. Appa Rao, Dr. P. Vijay Kumar: 'Managerial Economics and Financial Analysis', Cengage Publications, New Delhi – 2011.

66

- 2. Dr. A. R. Aryasri Managerial Economics and Financial Analysis, TMH 2011.
- 3. Prof. J.V.Prabhakara rao, Prof. P. Venkatarao. 'Managerial Economics and Financial Analysis', Ravindra Publication.

REFERENCES:

- 1. V. Maheswari : Managerial Economics, Sultan Chand.
- 2. Suma Damodaran : Managerial Economics, Oxford 2011.
- 3. Dr. B. Kuberudu and Dr. T. V. Ramana : Managerial Economics & Financial Analysis, Himalaya Publishing House 2011.
- 4. Vanitha Agarwal : Managerial Economics, Pearson Publications 2011.
- 5. Sanjay Dhameja : Financial Accounting for Managers, Pearson.
- 6. Maheswari : Financial Accounting, Vikas Publications.
- 7. S. A. Siddiqui & A. S. Siddiqui : Managerial Economics and Financial Analysis, New Age International Publishers, 2012.

II Year – I SEMESTER

T P C 3+1 0 3

ELECTRONIC DEVICES AND CIRCUITS

UNIT-I

Semi Conductor Physics : Insulators, Semi conductors and Metals classification using energy band diagrams, mobility and conductivity, electrons and holes in intrinsic semi conductors, extrinsic semi conductors, drift and diffusion, charge densities in semiconductors, Hall effect, continuity equation, law of junction, Fermi Dirac function, Fermi level in intrinsic and extrinsic Semiconductors.

UNIT- II

Junction Diode Characteristics : Open circuited p-n junction, Biased p-n junction, p-n junction diode, current components in PN junction Diode, diode equation, V-I Characteristics, temperature dependence on V-I characteristics, Diode resistance, Diode capacitance, energy band diagram of PN junction Diode.

Special Semiconductor Devices: Zener Diode, Breakdown mechanisms, Zener diode applications, LED, LCD, Photo diode, Varactor diode, Tunnel Diode, DIAC, TRIAC, SCR, UJT. Construction, operation and characteristics of all the diodes is required to be considered.

UNIT- III

Rectifiers and Filters: Basic Rectifier setup, half wave rectifier, full wave rectifier, bridge rectifier, derivations of characteristics of rectifiers, rectifier circuits-operation, input and output waveforms; Filters; Inductor filter, Capacitor filter, L- section filter, Π - section filter, Multiple L- section and Multiple Π section filter ,comparison of various filter circuits in terms of ripple factors.

UNIT- IV

Transistor Characteristics:

BJT: Junction transistor, transistor current components, transistor equation, transistor configurations, transistor as an amplifier, characteristics of transistor in Common Base, Common Emitter and Common Collector configurations, Ebers-Moll model of a transistor, punch through/ reach through, Photo transistor, typical transistor junction voltage values.

FET: FET types, construction, operation, characteristics, parameters, MOSFET-types, construction, operation, characteristics, comparison between JFET and MOSFET.

UNIT- V

Transistor Biasing and Thermal Stabilization : Need for biasing, operating point, load line analysis, BJT biasing- methods, basic stability, fixed bias, collector to base bias, self bias, Stabilization against variations in V_{BE} , Ic, and β , Stability factors, (S, S', S'), Bias compensation, Thermal runaway, Thermal stability. FET Biasing- methods and stabilization.

UNIT- VI

Small Signal Low Frequency Transistor Amplifier Models:

BJT: Two port network, Transistor hybrid model, determination of hparameters, conversion of h-parameters, generalized analysis of transistor amplifier model using h-parameters, Analysis of CB, CE and CC amplifiers using exact and approximate analysis, Comparison of transistor amplifiers.

FET: Generalized analysis of small signal model, Analysis of CG, CS and CD amplifiers, comparison of FET amplifiers.

TEXT BOOKS:

- 1. Electronic Devices and Circuits- J. Millman, C. Halkias, Tata Mc-Graw Hill, Second Edition.
- 2. Electronic Devices and Circuits-B.P.Singh, Rekha Singh, Pearson Publications, Second Edition.
- 3. Electronic Devices and Circuits-David A.Bell, Oxford University Press, Fifth Edition.

REFERENCES:

- 1. Electronic Devices and Circuits- K. Satya Prasad.
- 2. Electronic Devices and Circuits-Salivahanan, Kumar, Vallavaraj, Tata Mc-Graw Hill, Second Edition .
- 3. Electronic Devices and Circuit Theory-R.L. Boylestad and Louis Nashelsky, Pearson Publications, Tenth Edition.
- Electronic Devices and Circuits -BV Rao, KBR Murty, K Raja Rajeswari, PCR Pantulu, Pearson, 2nd edition.
- Integrated Electronics- Jacob Millman, C. Halkies, C.D. Parikh, Tata Mc-Graw Hill, 2009.

II Year – I SEMESTER

T P C 3+1 0 3

DATA STRUCTURES

Objectives: Comprehensive knowledge of data structures and ability to implement the same in software applications.

UNIT I:

Objective: exposure to algorithmic complexities, recursive algorithms, searching and sorting techniques

Preliminaries of algorithm, Algorithm analysis and complexity

Data structure- Definition, types of data structures

Recursion: Definition, Design Methodology and Implementation of recursive algorithms, Linear and binary recursion, recursive algorithms for factorial function, GCD computation, Fibonacci sequence, Towers of Hanoi, Tail recursion.

List Searches using Linear Search, Binary Search, Fibonacci Search

Sorting Techniques: Basic concepts, Sorting by : insertion (Insertion sort), selection (heap sort), exchange (bubble sort, quick sort), distribution (radix sort) and merging (merge sort) Algorithms.

UNIT II:

Objectives: Applying stack and queue techniques for logical operations

Stacks and Queues: Basic Stack Operations, Representation of a Stack using Arrays, Stack Applications: Reversing list, Factorial Calculation, Infix to postfix Transformation, Evaluating Arithmetic Expressions.

Queues: Basic Queues Operations, Representation of a Queue using array, Implementation of Queue Operations using Stack, Applications of Queues-Round robin Algorithm, Circular Queues, Priority Queues.

UNIT III:

Objectives: Exposure to list representation models in various types of applications

Linked Lists: Introduction, single linked list, representation of a linked list in memory, Operations on a single linked list, Reversing a single linked list, applications of single linked list to represent polynomial expressions and sparse matrix manipulation, Advantages and disadvantages of single linked list, Circular linked list, Double linked list

UNIT IV:

Objectives: Implementation of tree implementation in various forms

Trees: Basic tree concepts, Binary Trees: Properties, Representation of Binary Trees using arrays and linked lists, operations on a Binary tree, Binary Tree Traversals (recursive), Creation of binary tree from in, pre and post order traversals

UNIT-V:

Objectives: Advanced understanding of other variants of trees and their operations.

Advanced concepts of Trees: Tree Travels using stack (non recursive), Threaded Binary Trees. Binary search tree, Basic concepts, BST operations: insertion, deletion, Balanced binary trees – need, basics and applications in computer science (No operations).

UNIT VI:

Objectives: orientation on graphs, representation of graphs, graph traversals, spanning trees.

Graphs: Basic concepts, Representations of Graphs: using Linked list and adjacency matrix, Graph algorithms.

Graph Traversals (BFS & DFS), applications: Dijkstra's shortest path, Transitive closure, Minimum Spanning Tree using Prim's Algorithm, warshall's Algorithm (Algorithemic Concepts Only, No Programs required).

TEXT BOOKS:

- 1. Data Structure with C, Seymour Lipschutz, TMH
- 2. Data Structures using C,Reema Thareja, Oxford
- 3. Data Structures, 2/e, Richard F, Gilberg , Forouzan, Cengage
- 4. Data structures and algorithm analysis in C, 2nd ed, mark allen weiss

REFERENCE BOOKS:

- 1. Data Structures and Algorithms, 2008, G.A.V.Pai, TMH
- 2. Classic Data Structures, 2/e, Debasis ,Samanta,PHI,2009
- 3. Fundamentals of Data Structure in C, 2/e, Horowitz, Sahni, Anderson Freed, University Prees.

II Year - I SEMESTER

T P C 3 0 3

ENVIRONMENTAL STUDIES

Course Learning Objectives:

The objectives of the course is to impart

- 1. Overall understanding of the natural resources
- 2. Basic understanding of the ecosystem and its diversity
- 3. Acquaintance on various environmental challenges induced due to unplanned anthropogenic activities
- 4. An understanding of the environmental impact of developmental activities
- 5. Awareness on the social issues, environmental legislation and global treaties

Course Outcomes:

The student should have knowledge on

- 1. The natural resources and their importance for the sustenance of the life and recognise the need to conserve the natural resources
- 2. The concepts of the ecosystem and its function in the environment. The need for protecting the producers and consumers in various ecosystems and their role in the food web
- 3. The biodiversity of India and the threats to biodiversity, and conservation practices to protect the biodiversity
- 4. Various attributes of the pollution and their impacts and measures to reduce or control the pollution along with waste management practices
- 5. Social issues both rural and urban environment and the possible means to combat the challenges
- 6. The environmental legislations of India and the first global initiatives towards sustainable development.
- 7. About environmental assessment and the stages involved in EIA and the environmental audit

Syllabus:

UNIT - I

Multidisciplinary nature of Environmental Studies: Definition, Scope and Importance –Sustainability: Stockholm and Rio Summit–Global Environmental Challenges: Global warming and climate change, acid rains,

72

ozone layer depletion, population growth and explosion, effects. Role of information Technology in Environment and human health.

Ecosystems: Concept of an ecosystem. - Structure and function of an ecosystem. - Producers, consumers and decomposers. - Energy flow in the ecosystem - Ecological succession. - Food chains, food webs and ecological pyramids. - Introduction, types, characteristic features, structure and function of Forest ecosystem, Grassland ecosystem, Desert ecosystem, Aquatic ecosystems.

UNIT - II

Natural Resources: Natural resources and associated problems

Forest resources – Use and over – exploitation, deforestation – Timber extraction – Mining, dams and other effects on forest and tribal people.

Water resources – Use and over utilization of surface and ground water – Floods, drought, conflicts over water, dams – benefits and problems.

Mineral resources: Use and exploitation, environmental effects of extracting and using mineral resources.

Food resources: World food problems, changes caused by non-agriculture activities-effects of modern agriculture, fertilizer-pesticide problems, water logging, salinity.

Energy resources: Growing energy needs, renewable and non-renewable energy sources use of alternate energy sources.

Land resources: Land as a resource, land degradation, Wasteland reclamation, man induced landslides, soil erosion and desertification. Role of an individual in conservation of natural resources. Equitable use of resources for sustainable lifestyles.

UNIT - III

Biodiversity and its conservation: Definition: genetic, species and ecosystem diversity- classification - Value of biodiversity: consumptive use, productive use, social-Biodiversity at national and local levels. India as a mega-diversity nation - Hot-sports of biodiversity - Threats to biodiversity: habitat loss, man-wildlife conflicts. - Endangered and endemic species of India – Conservation of biodiversity: conservation of biodiversity.

UNIT - IV

Environmental Pollution: Definition, Cause, effects and control measures of Air pollution, Water pollution, Soil pollution, Noise pollution, Nuclear

hazards. Role of an individual in prevention of pollution. - Pollution case studies.

Solid Waste Management: Sources, classification, effects and control measures of urban and industrial solid wastes. Consumerism and waste products.

UNIT - V

Social Issues and the Environment: Urban problems related to energy -Water conservation, rain water harvesting-Resettlement and rehabilitation of people; its problems and concerns. Environmental ethics: Issues and possible solutions. Environmental Protection Act -Air (Prevention and Control of Pollution) Act. –Water (Prevention and control of Pollution) Act -Wildlife Protection Act -Forest Conservation Act-Issues involved in enforcement of environmental legislation. -Public awareness.

UNIT - VI

Environmental Management: Impact Assessment and its significance various stages of EIA, preparation of EMP and EIS, Environmental audit. Ecotourism.

The student should submit a report individually on any issues related to Environmental Studies course and make a power point presentation.

Text Books:

- 1. Environmental Studies by R. Rajagopalan, 2nd Edition, 2011, Oxford University Press.
- 2. A Textbook of Environmental Studies by Shaashi Chawla, TMH, New Delhi.
- 3. Environmental Studies by P.N. Palanisamy, P. Manikandan, A. Geetha, and K. Manjula Rani; Pearson Education, Chennai.

Reference:

- 1. Text Book of Environmental Studies by Deeshita Dave & P. Udaya Bhaskar, Cengage Learning.
- 2. Environmental Studies by K.V.S.G. Murali Krishna, VGS Publishers, Vijayawada.
- 3. Environmental Studies by Benny Joseph, Tata McGraw Hill Co, New Delhi.
- 4. Environmental Studies by Piyush Malaviya, Pratibha Singh, Anoop singh: Acme Learning, New Delhi.

II Year – I SEMESTER

T P C 3+1 0 3

SIGNALS AND SYSTEMS

UNIT I

SIGNAL ANALYSIS & FOURIER SERIES : Analogy between vectors and signals, Orthogonal signal space, Signal approximation using orthogonal functions, Mean square error, Closed or complete set of orthogonal functions, Orthogonality in complex functions, Exponential and sinusoidal signals, Concepts of Impulse function, Unit step function, Signum function. Representation of Fourier series, Continuous time periodic signals, properties of Fourier series, Dirichlet's conditions, Trigonometric Fourier series and Exponential Fourier series, Complex Fourier spectrum.

UNIT II

FOURIER TRANSFORMS & SAMPLING: Deriving Fourier transform from Fourier series, Fourier transform of arbitrary signal, Fourier transform of standard signals, Fourier transform of periodic signals, properties of Fourier transforms, Fourier transforms involving impulse function and Signum function. Introduction to Hilbert Transform. Sampling theorem – Graphical and analytical proof for Band Limited Signals, impulse sampling, Natural and Flat top Sampling, Reconstruction of signal from its samples, effect of under sampling – Aliasing, Introduction to Band Pass sampling.

UNIT III

SIGNAL TRANSMISSION THROUGH LINEAR SYSTEMS : Linear system, impulse response, Response of a linear system, Linear time invariant (LTI) system, Linear time variant (LTV) system, Transfer function of a LTI system. Filter characteristics of linear systems. Distortion less transmission through a system, Signal bandwidth, system bandwidth, Ideal LPF, HPF and BPF characteristics, Causality and Poly-Wiener criterion for physical realization, relationship between bandwidth and rise time.

UNIT IV

CONVOLUTION AND CORRELATION OF SIGNALS : Concept of convolution in time domain and frequency domain, Graphical representation of convolution, Convolution property of Fourier transforms. Cross

correlation and auto correlation of functions, properties of correlation function, Energy density spectrum, Parseval's theorem, Power density spectrum, Relation between auto correlation function and energy/power spectral density function. Relation between convolution and correlation, Detection of periodic signals in the presence of noise by correlation, Extraction of signal from noise by filtering.

UNIT V

LAPLACE TRANSFORMS :Review of Laplace transforms, Partial fraction expansion, Inverse Laplace transform, Concept of region of convergence (ROC) for Laplace transforms, constraints on ROC for various classes of signals, Properties of L.T's, Relation between L.T's, and F.T. of a signal. Laplace transform of certain signals using waveform synthesis.

UNIT VI

Z-TRANSFORMS : Fundamental difference between continuous and discrete time signals, discrete time signal representation using complex exponential and sinusoidal components, Periodicity of discrete time using complex exponential signal, Concept of Z- Transform of a discrete sequence. Distinction between Laplace, Fourier and Z transforms. Region of convergence in Z-Transform, constraints on ROC for various classes of signals, Inverse Z-transform, properties of Z-transforms.

TEXT BOOKS :

- Signals, Systems & Communications B.P. Lathi, BS Publications, 2003.
- 2. Signals and Systems A.V. Oppenheim, A.S. Willsky and S.H. Nawab, PHI, 2nd Edn.
- 3. Signals & Systems- Narayan Iyer and K Satya Prasad , Cenage Pub.

REFERENCES :

- 1. Signals & Systems Simon Haykin and Van Veen, Wiley, 2nd Edition.
- 2. Signals and Systems K R Rajeswari
- 3. Fundamentals of Signals and Systems- Michel J. Robert, MGH International Edition, 2008.
- 4. Signals and Systems

II Year – I SEMESTER

T P C 3+1 0 3

ELECTRICAL TECHNOLOGY

This course covers various topics related to principle of operation and performance of various electrical machines.

Learning objectives:

- i. To learn the principle of electromechanical energy conversion of single excited and multi excited machines.
- ii. To understand the principle of operation, constructional details and operational characteristics of DC generators.
- iii. To understand the principle and characteristics of DC motors. To introduce starting and speed control methods of DC motors.
- iv. To learn the principle of operation and constructional details of transformers. Develop the equivalent circuit and evaluate the performance of transformers.
- v. To learn the principle of operation and constructional details of three phase induction motor. Study the torque slip characteristics and starting methods of induction motor.
- vi. To study the principle of operation of single phase induction motor, shaded pole motor, capacitor motor and AC servo motor.

UNIT I

ELECTROMECHANICAL ENERGY CONVERSION : Introduction to S.I units – Principles of electromechanical energy conversion – forces and torque in a magnetic field systems-energy balance – single excited machine – magnetic forces– co-energy – multi excited magnetic field system.

UNIT II

DC GENERATORS : Principle of operation and construction of DC generators - EMF equation – types of generators – magnetization and load characteristics of DC generators.

UNIT III

DC MOTORS : Principle of operation and construction of DC Motors – types of DC Motors – Characteristics of DC motors – basic starting methods

77

for DC shunt motor – losses and efficiency – Swinburne's test – speed control of DC shunt motor – flux and Armature voltage control methods.

UNIT IV

TRANSFORMERS : Principle of operation of single phase transformer – types – constructional features – phasor diagram on no-load and load – equivalent circuit, losses and efficiency of transformer - regulation of transformer – OC and SC tests – predetermination of efficiency and regulation.

UNIT V

INDUCTION MACHINE: Principle of operation and construction of threephase induction motors –slip ring and squirrel cage motors – slip-torque characteristics – efficiency calculation – starting methods.

UNIT VI

SPECIAL MACHINES : Principle of operation and construction - single phase induction motor - shaded pole motors – capacitor motors and AC servomotor.

Learning outcomes:

- 1. Able to understand the principles of electro mechanical energy conversion.
- 2. Able to explain the operation of DC generator and analyze the characteristics of DC generator.
- 3. Able to explain the principle of operation of DC motor and analyze their characteristics. Acquire the skills to analyze the starting and speed control methods of DC motors.
- 4. Capability to develop equivalent circuit and evaluate performance of transformers.
- 5. Ability to analyze speed torque characteristics of induction motor and understand starting methods of induction motor.
- 6. Capability to understand the operation of various special machines.

TEXT BOOKS:

- 1. Principles of Electrical Machines by V.K. Mehta & Rohit Mehta, S.Chand publications.
- 2. Theory & performance of Electrical Machines by J.B.Guptha, S.K.Kataria & Sons.

REFERENCE BOOKS:

- 1. Basic Electrical Engineering by M.S.Naidu and S.Kamakshiah, TMH Publications.
- 2. Fundamentals of Electrical Engineering by Rajendra Prasad, PHI Publications, 2nd edition.
- 3. Basic Electrical Engineering by Nagsarkar, Sukhija, Oxford Publications, 2^{nd} edition.

II Year – I SEMESTER

T P C 0 3 2

ELECTRONIC DEVICES AND CIRCUITS LAB

PART A: Electronic Workshop Practice

- 1. Identification, Specifications, Testing of R, L, C Components (Colour Codes), Potentiometers, Coils, Gang Condensers, Relays, Bread Boards.
- 2. Identification, Specifications and Testing of active devices, Diodes, BJTs, JFETs, LEDs, LCDs, SCR, UJT.
- 3. Soldering Practice- Simple circuits using active and passive components.
- 4. Study and operation of Ammeters, Voltmeters, Transformers, Analog and Digital Multimeter, Function Generator, Regulated Power Supply and CRO.

PART B: List of Experiments (For Laboratory Examination-Minimum of Ten Experiments)

- P-N Junction Diode Characteristics
 Part A: Germanium Diode (Forward bias& Reverse bias)
 Part B: Silicon Diode (Forward Bias only)
- Zener Diode Characteristics Part A: V-I Characteristics Part B: Zener Diode as Voltage Regulator
- Rectifiers (without and with c-filter) Part A: Half-wave Rectifier Part B: Full-wave Rectifier
- BJT Characteristics(CE Configuration) Part A: Input Characteristics Part B: Output Characteristics
- FET Characteristics(CS Configuration) Part A: Drain Characteristics Part B: Transfer Characteristics

80

- 6. SCR Characteristics
- 7. UJT Characteristics
- 8. Transistor Biasing
- 9. CRO Operation and its Measurements
- 10. BJT-CE Amplifier
- 11. Emitter Follower-CC Amplifier
- 12. FET-CS Amplifier

PART C: Equipment required for Laboratory

- 1. Boxes
- 2. Ammeters (Analog or Digital)
- 3. Voltmeters (Analog or Digital)
- 4. Active & Passive Electronic Components
- 5. Regulated Power supplies
- 6. Analog/Digital Storage Oscilloscopes
- 7. Analog/Digital Function Generators
- 8. Digital Multimeters
- 9. Decade Résistance Boxes/Rheostats
- 10. Decade Capacitance

II Year – I SEMESTER

T P C 0 3 2

NETWORKS & ELECTRICAL TECHNOLOGY LAB

PART – A

Any five experiments are to be conducted from each part

- 1. Series and Parallel Resonance Timing, Resonant frequency, Bandwidth and Q-factor determination for RLC network.
- 2. Time response of first order RC/RL network for periodic non-sinusoidal inputs time constant and steady state error determination.
- 3. Two port network parameters Z-Y Parameters, chain matrix and analytical verification.
- 4. Verification of Superposition and Reciprocity theorems.
- 5. Verification of maximum power transfer theorem. Verification on DC, verification on AC with Resistive and Reactive loads.
- 6. Experimental determination of Thevenin's and Norton's equivalent circuits and verification by direct test.

PART – B

- 1. Magnetization characteristics of D.C. Shunt generator. Determination of critical field resistance.
- 2. Swinburne's Test on DC shunt machine (Predetermination of efficiency of a given DC Shunt machine working as motor and generator).
- 3. Brake test on DC shunt motor. Determination of performance characteristics.
- 4. OC & SC tests on Single-phase transformer (Predetermination of efficiency and regulation at given power factors and determination of equivalent circuit).
- 5. Brake test on 3-phase Induction motor (performance characteristics).
- 6. Regulation of alternator by synchronous impedance method.

II Year – II SEMESTER

T P C 3+1 0 3

ELECTRONIC CIRCUIT ANALYSIS

UNIT-I

Small Signal High Frequency Transistor Amplifier models:

BJT: Transistor at high frequencies, Hybrid- π common emitter transistor model, Hybrid π conductances, Hybrid π capacitances, validity of hybrid π model, determination of high-frequency parameters in terms of low-frequency parameters, CE short circuit current gain, current gain with resistive load, cut-off frequencies, frequency response and gain bandwidth product.

FET: Analysis of common Source and common drain Amplifier circuits at high frequencies.

UNIT-II

Multistage Amplifiers : Classification of amplifiers, methods of coupling, cascaded transistor amplifier and its analysis, analysis of two stage RC coupled amplifier, high input resistance transistor amplifier circuits and their analysis-Darlington pair amplifier, Cascode amplifier, Boot-strap emitter follower, Analysis of multi stage amplifiers using FET, Differential amplifier using BJT.

UNIT -III

Feedback Amplifiers : Feedback principle and concept, types of feedback, classification of amplifiers, feedback topologies, Characteristics of negative feedback amplifiers, Generalized analysis of feedback amplifiers, Performance comparison of feedback amplifiers, Method of analysis of feedback amplifiers.

UNIT-IV

Oscillators: Oscillator principle, condition for oscillations, types of oscillators, RC-phase shift and Wein bridge oscillators with BJT and FET and their analysis, Generalized analysis of LC Oscillators, Hartley and

83

Colpitt's oscillators with BJT and FET and their analysis, Crystal oscillators, Frequency and amplitude stability of oscillators.

UNIT-V

Power Amplifiers: Classification of amplifiers, Class A power Amplifiers and their analysis, Harmonic Distortions, Class B Push-pull amplifiers and their analysis, Complementary symmetry push pull amplifier, Class AB power amplifier, Class-C power amplifier, Thermal stability and Heat sinks, Advanced power amplifiers, Distortion in amplifiers.

UNIT-VI

Tuned Amplifiers : Introduction, Q-Factor, small signal tuned amplifier, capacitance single tuned amplifier, double tuned amplifiers, effect of cascading single tuned amplifiers on band width, effect of cascading double tuned amplifiers on band width, staggered tuned amplifiers, stability of tuned amplifiers, wideband amplifiers.

TEXT BOOKS:

- 1. Integrated Electronics- J. Millman and C.C. Halkias, Tata Mc Graw-Hill, 1972.
- 2. Electronic Circuit Analysis-B.V.Rao,K.R.Rajeswari, P.C.R.Pantulu,K.B.R.Murthy, Pearson Publications.
- 3. Electronic Devices and Circuits- Salivahanan, N.Suressh Kumar, A. Vallavaraj, TATA McGraw Hill, Second Edition

REFERENCES:

- 1. Microelectronic Circuits-Sedra A.S. and K.C. Smith, Oxford University Press, Sixth Edition.
- Electronic Circuit Analysis and Design Donald A. Neaman, Mc Graw Hill.
- 3. Electronic Circuits-I-Ravish R Singh-Peason Publications.
- 4. Electronic Devices and Circuits Theory Robert L. Boylestad and Louis Nashelsky, Pearson/Prentice Hall, Tenth Edition.
- 5. Electronic circuits Principles and Application R.D.S.Samuel, B.Sujatha, Elesevier Publications.

II Year – II SEMESTER

T P C 3+1 0 3

MANAGEMENT SCIENCE

UNIT – I:

(*The Learning objective of this Unit is to understand the concept and nature of Management, Evolution of Management theories, Motivation and leadership Styles).

Introduction to Management: Concept – Nature and Importance of Management, Functions-Evaluation of Management, Motivation Theories – Leadership Styles – Decision Making Process-designing Organization Structure – Principles and types of Organization.

(**The learner is able to understand the concept and functions of Management, and Theeories of Motivation, Styles of Leardership)

UNIT – II:

(The Learning objective of this Unit is to Equip with the concepts of Operations, project management and inventory control).

Operations and Project Management: Work-Study-Statistical Quality Control Through Control Charts-Inventory Control-EOQ & ABC Analysis (Simple Problems) Project Management-PERT/CPM-Project Crashing (Simple Problem).

(**The learner is able to understand the main idea of Inspection and scrutinize the different methods of inspection, the concept of Inventory Management and Control and Inventory Pricing).

UNIT – III:

(* The Objective of this unit is to understand the main functional areas of organization i.e., Financial Management, Production Management, Marketing Management, Human Resource Management, and Product Life Cycles and Channels of Distribution).

Functional Management: Concept and Functions of Finance, HR, Production, Marketing Management and Services – Job Evolution and Merit Rating – Product Life Cycles – Channels of Distribution – Types/Methods of Production.

(**At the end of this chapter the learner is able to understand the different functional areas in an organization and their responsibilities – Product Life Cycle and Channels of Distribution.).

UNIT – IV:

(*The objective of this unit is to equip with the concept and practical issues relating to Strategic Management)

Strategic Management: Vision, Mission, Goals, Strategy – Corporate Planning Process – Environmental Scanning – SWOT analysis – Different Steps in Strategy Formulation, Implementation and Evaluation. (**The learner is able to familiar with the meaning of Vision, Mission, Goals and Strategies of the Organization and to implement successfully).

UNIT – V:

(*The objective of this unit is to understand the need and importance of Business Ethics and Communication Skills in Contemporary situations).

Business Ethics & Communications: Ethics in Business and Management – Ethics in HRM, Finance & Marketing Management – Business Ethics & Law (** The Learner is able to know the practical Issues of Business Ethics in various functional areas, to improve Report Writing skills and Understand the Communication Process).

UNIT – VI:

(*The Learning objective of this unit is to equip with the contemporary management practices, i.e., MIS, MRP, JIT and ERP etc.,)

Contemporary Management Practices: Basic concepts of MIS, MRP, Just-In-Time (JIT)System, Total Quality Management (TQM), Six Sigma and Capability Maturity Models (CMM) Levies, Supply Chain Management, Enterprise Resource Planning (ERP), Performance Management, Business Process Outsourcing (BPO), Business Process Re-Engineering and Bench Marking, Balance Score Card.

(**The Learner is able to Understand the various contemporary issues in Management Practices like TQM and BPO etc.,)

Note: *Learning Objective

** Learning Assessment

TEXT BOOKS

- 1. Kumar/Rao/Chhalill 'Introduction to Management Science' Cengage, Delhi, 2012.
- 2. Dr. A. R. Aryasri, Management Science' TMH 2011.

REFERENCES

- 1. Koontz & Weihrich: 'Essentials of Management' TMH 2011
- 2. Seth & Rastogi: Global Management Systems, Cengage Learning, Delhi, 2011.
- 3. Robbins: Organizational Behaviors, Pearson Publications, 2011
- 4. Kanishka Bedi: Production & Operational Management, Oxford Publications, 2011.
- 5. Manjunath: Management Science, Pearson Publications, 2013.
- 6. Biswajit Patnaik: Human Resource Management, PHI, 2011.
- 7. Hitt and Vijaya Kumar: Strategic Management, Cengage Learning.
- 8. Dr. PG. Ramanujam, BVR Naidu, PV Rama Sastry : Management Science Himalaya Publishing House, 2013.
- 9. Management Shapers, Universities Press.

II Year – II SEMESTER

T P C 3+1 0 3

RANDOM VARIABLES & STOCHASTIC PROCESSES

UNIT I

THE RANDOM VARIABLE : Introduction, Definition of a Random Variable, Conditions for a Function to be a Random Variable, Discrete, Continuous and Mixed Random Variables, Distribution and Density functions, Properties, Binomial, Poisson, Uniform, Gaussian, Exponential, Rayleigh, Conditional Distribution, Conditional Density, Properties.

UNIT II

OPERATION ON ONE RANDOM VARIABLE – EXPECTATIONS : Introduction, Expected Value of a Random Variable, Function of a Random Variable, Moments about the Origin, Central Moments, Variance and Skew, Chebychev's Inequality, Characteristic Function, Moment Generating Function, Transformations of a Random Variable: Monotonic Transformations for a Continuous Random Variable, Nonmonotonic Transformations of Continuous Random Variable.

UNIT III

MULTIPLE RANDOM VARIABLES: Vector Random Variables, Joint Distribution Function, Properties of Joint Distribution, Marginal Distribution Functions, Conditional Distribution and Density, Statistical Independence, Sum of Two Random Variables, Sum of Several Random Variables, Central Limit Theorem: Unequal Distribution, Equal Distributions.

OPERATIONS ON MULTIPLE RANDOM VARIABLES: Joint Moments about the Origin, Joint Central Moments, Joint Characteristic Functions, Jointly Gaussian Random Variables: Two Random Variables case, N Random Variables case, Properties, Transformations of Multiple Random Variables, Linear Transformations of Gaussian Random Variables.

UNIT IV

RANDOM PROCESSES – TEMPORAL CHARACTERISTICS: The Random Process Concept, Classification of Processes, Deterministic and Nondeterministic Processes, Distribution and Density Functions, Concept of Stationarity and Statistical Independence. First-Order Stationary Processes, Second- Order and Wide-Sense Stationarity, Nth-order and Strict-Sense Stationarity, Time Averages and Ergodicity, Autocorrelation Function and its Properties, Cross-Correlation Function and its Properties, Covariance Functions, Gaussian Random Processes, Poisson Random Process.

UNIT V

RANDOM PROCESSES – SPECTRAL CHARACTERISTICS: The Power Spectrum: Properties, Relationship between Power Spectrum and Autocorrelation Function, The Cross-Power Density Spectrum, Properties, Relationship between Cross-Power Spectrum and Cross-Correlation Function.

UNIT VI

LINEAR SYSTEMS WITH RANDOM INPUTS : Random Signal Response of Linear Systems: System Response – Convolution, Mean and Mean-squared Value of System Response, Autocorrelation Function of Response, Cross-Correlation Functions of Input and Output, Spectral Characteristics of System Response: Power Density Spectrum of Response, Cross-Power Density Spectra of Input and Output, Band pass, Band-Limited and Narrowband Processes, Properties, Modeling of Noise Sources: Resistive (Thermal) Noise Source, Arbitrary Noise Sources, Effective Noise Temperature, Average Noise Figure, Average Noise Figure of cascaded networks.

TEXT BOOKS:

- 1. Probability, Random Variables & Random Signal Principles, Peyton Z. Peebles, TMH, 4th Edition, 2001.
- 2. Probability, Random Variables and Stochastic Processes, Athanasios Papoulis and S.Unnikrisha, PHI, 4th Edition, 2002.

REFERENCES:

- 1. Probability Theory and Stochastic Processes B. Prabhakara Rao, Oxford University Press.
- Probability and Random Processes with Applications to Signal Processing, Henry Stark and John W. Woods, Pearson Education, 3rd Edition.
- Probabilistic Methods of Signal & System Analysis, George R. Cooper, Clave D. Mc Gillem, Oxford, 3rd Edition, 1999.
- 4. Statistical Theory of Communication, S.P.Eugene Xavier, New Age Publications, 2003.
- 5. Signals, Systems & Communications, B.P. Lathi, B.S. Publications, 2003.
- 6. Probability and Random Processes, An Introduction for Applied Scientists and Engineers, Davenport W.B, McGraw-Hill, 1970.
- 7. Introduction to Random Processes with Applications to Signals and Systems, Gardener W.A, McGraw-Hill, 2nd Edition.
- 8. Schaum's Outline of Probability, Random Variables, and Random Processes.
- 9. An Introduction to Random Signals and Communication Theory, B.P. Lathi, International Textbook, 1968.

II Year - II SEMESTER

T P C 3+1 0 3

SWITCHING THEORY AND LOGIC DESIGN

UNIT – I

REVIEW OF NUMBER SYSTEMS & CODES:

- Representation of numbers of different radix, conversation from one radix to another radix, r-1's compliments and r's compliments of signed members, problem solving.
- ii) 4 bit codes, BCD, Excess-3, 2421, 84-2-1 9's compliment code etc.,
- Logic operations and error detection & correction codes; Basic logic operations -NOT, OR, AND, Universal building blocks, EX-OR, EX-NOR - Gates, Standard SOP and POS, Forms, Gray code, error detection, error correction codes (parity checking, even parity, odd parity, Hamming code) NAND-NAND and NOR-NOR realizations.

UNIT – II

MINIMIZATION TECHNIQUES:

Boolean theorems, principle of complementation & duality, De-morgan theorems, minimization of logic functions using Boolean theorems, minimization of switching functions using K-Map up to 6 variables, tabular minimization, problem solving (code-converters using K-Map etc..).

UNIT – III

COMBINATIONAL LOGIC CIRCUITS DESIGN :

Design of Half adder, full adder, half subtractor, full subtractor, applications of full adders, 4-bit binary subtractor, adder-subtractor circuit, BCD adder circuit, Excess 3 adder circuit, look-a-head adder circuit, Design of decoder, demultiplexer, 7 segment decoder, higher order demultiplexing, encoder, multiplexer, higher order multiplexing, realization of Boolean functions using decoders and multiplexers, priority encoder, 4-bit digital comparator.

UNIT – IV

INTRODUCTION OF PLD's :

PROM, PAL, PLA-Basics structures, realization of Boolean function with PLDs, programming tables of PLDs, merits & demerits of PROM, PAL, PLA comparison, realization of Boolean functions using PROM, PAL, PLA, programming tables of PROM, PAL, PLA.

UNIT – V

SEQUENTIAL CIRCUITS I:

Classification of sequential circuits (synchronous and asynchronous); basic flip-flops, truth tables and excitation tables (nand RS latch, nor RS latch, RS flip-flop, JK flip-flop, T flip-flop, D flip-flop with reset and clear terminals). Conversion from one flip-flop to flip-flop. Design of ripple counters, design of synchronous counters, Johnson counter, ring counter. Design of registers - Buffer register, control buffer register, shift register, bi-directional shift register, universal shift register.

$\mathbf{UNIT} - \mathbf{VI}$

SEQUENTIAL CIRCUITS II :

Finite state machine; Analysis of clocked sequential circuits, state diagrams, state tables, reduction of state tables and state assignment, design procedures. Realization of circuits using various flip-flops. Meelay to Moore conversion and vice-versa.

TEXT BOOKS:

- 1. Switching Theory and Logic Design by Hill and Peterson Mc-Graw Hill TMH edition.
- 2. Switching Theory and Logic Design by A. Anand Kumar
- 3. Digital Design by Mano PHI.

REFERENCE BOOKS:

- 1. Modern Digital Electronics by RP Jain, TMH.
- 2. Fundamentals of Logic Design by Charles H. Roth Jr, Jaico Publishers.
- 3. Micro electronics by Milliman MH edition.

II Year – II SEMESTER

T P C 3+1 0 3

EM WAVES AND TRANSMISSION LINES

UNIT I

Electrostatics: Coulomb's Law, Electric Field Intensity Electric Flux Density, Gauss Law and Applications, Electric Potential, Maxwell's Two Equations for Electrostatic Fields, Energy Density, Illustrative Problems. Convection and Conduction Currents, Dielectric Constant, Continuity Equation, Relaxation Time, Poisson's and Laplace's Equations; Capacitance – Parallel Plate, Coaxial, Spherical Capacitors, Illustrative Problems.

Magneto Statics : Biot-Savart Law, Ampere's Circuital Law and Applications, Magnetic Flux Density, Maxwell's Two Equations for Magnetostatic Fields, Magnetic Scalar and Vector Potentials, Forces due to Magnetic Fields, Ampere's Force Law, Inductances and Magnetic Energy. Illustrative Problems.

UNIT II

Maxwell's Equations (Time Varying Fields): Faraday's Law and Transformer emf, Inconsistency of Ampere's Law and Displacement Current Density, Maxwell's Equations in Different Final Forms and Word Statements. Conditions at a Boundary Surface : Dielectric-Dielectric and Dielectric-Conductor Interfaces. Illustrative Problems.

UNIT III

EM Wave Characteristics - I: Wave Equations for Conducting and Perfect Dielectric Media, Uniform Plane Waves – Definition, All Relations Between E & H. Sinusoidal Variations. Wave Propagation in Lossless and Conducting Media. Conductors & Dielectrics – Characterization, Wave Propagation in Good Conductors and Good Dielectrics. Polarization. Illustrative Problems.

UNIT IV

EM Wave Characteristics – II: Reflection and Refraction of Plane Waves – Normal and Oblique Incidences, for both Perfect Conductor and Perfect Dielectrics, Brewster Angle, Critical Angle and Total Internal Reflection,

Surface Impedance. Poynting Vector and Poynting Theorem – Applications, Power Loss in a Plane Conductor. Illustrative Problems.

UNIT VI

Transmission Lines - I: Types, Parameters, Transmission Line Equations, Primary & Secondary Constants, Expressions for Characteristic Impedance, Propagation Constant, Phase and Group Velocities, Infinite Line Concepts, Losslessness/Low Loss Characterization, Distortion – Condition for Distortionlessness and Minimum Attenuation, Loading - Types of Loading. Illustrative Problems.

UNIT VI

Transmission Lines – **II** : Input Impedance Relations, SC and OC Lines, Reflection Coefficient, VSWR. UHF Lines as Circuit Elements; $\lambda/4$, $\lambda/2$, $\lambda/8$ Lines – Impedance Transformations. Smith Chart – Configuration and Applications, Single and Double Stub Matching. Illustrative Problems.

TEXT BOOKS :

- Elements of Electromagnetic Matthew N.O. Sadiku, Oxford Univ. Press, 3rd ed., 2001.
- Electromagnetic Waves and Radiating Systems E.C. Jordan and K.G. Balmain, PHI, 2nd Edition, 2000.

REFERENCES:

- 1. Electromagnetic Fields and Wave Theory –GSN Raju, Pearson Education 2006
- 2. Engineering Electromagnetics Nathan Ida, Springer (India) Pvt. Ltd., New Delhi, 2nd ed., 2005.
- 3. Engineering Electromagnetics William H. Hayt Jr. and John A. Buck, TMH, 7th ed., 2006.
- Transmission Lines and Networks Umesh Sinha, Satya Prakashan (Tech. India Publications), New Delhi, 2001.

II Year – II SEMESTER

T P C 3+1 0 3

ANALOG COMMUNICATIONS

UNIT I

AMPLITUDE MODULATION : Introduction to communication system, Need for modulation, Frequency Division Multiplexing , Amplitude Modulation, Definition, Time domain and frequency domain description, single tone modulation, power relations in AM waves, Generation of AM waves, square law Modulator, Switching modulator, Detection of AM Waves; Square law detector, Envelope detector.

UNIT II

DSB & SSB MODULATION : Double side band suppressed carrier modulators, time domain and frequency domain description, Generation of DSBSC Waves, Balanced Modulators, Ring Modulator, Coherent detection of DSB-SC Modulated waves, COSTAS Loop. Frequency domain description, Frequency discrimination method for generation of AM SSB Modulated Wave, Time domain description, Phase discrimination method for generating AM SSB Modulated waves. Demodulation of SSB Waves, Vestigial side band modulation: Frequency description, Generation of VSB Modulated wave, Time domain description, Envelope detection of a VSB Wave pulse Carrier, Comparison of AM Techniques, Applications of different AM Systems.

UNIT III

ANGLE MODULATION : Basic concepts, Frequency Modulation: Single tone frequency modulation, Spectrum Analysis of Sinusoidal FM Wave, Narrow band FM, Wide band FM, Constant Average Power, Transmission bandwidth of FM Wave - Generation of FM Waves, Direct FM, Detection of FM Waves: Balanced Frequency discriminator, Zero crossing detector, Phase locked loop, Comparison of FM & AM.

UNIT IV

NOISE : Noise in Analog communication System, Noise in DSB & SSB

93

System, Noise in AM System, Noise in Angle Modulation System, Threshold effect in Angle Modulation System, Pre-emphasis & de-emphasis.

UNIT V

TRANSMITTERS & RECEIVERS: Radio Transmitter - Classification of Transmitter, AM Transmitter, Effect of feedback on performance of AM Transmitter, FM Transmitter – Variable reactance type and phase modulated FM Transmitter, frequency stability in FM Transmitter. **Radio Receiver** - Receiver Types - Tuned radio frequency receiver, Superhetrodyne receiver, RF section and Characteristics - Frequency changing and tracking, Intermediate frequency, AGC, FM Receiver, Comparison with AM Receiver, Amplitude limiting.

UNIT VI

PULSE MODULATION : Time Division Multiplexing, Types of Pulse modulation, PAM (Single polarity, double polarity) PWM: Generation & demodulation of PWM, PPM, Generation and demodulation of PPM, TDM Vs FDM.

TEXT BOOKS:

- Principles of Communication Systems H Taub & D. Schilling, Gautam Sahe, TMH, 2007 3rd Edition.
- 2. Communication Systems B.P. Lathi, BS Publication, 2006.

REFERENCES:

- Principles of Communication Systems Simon Haykin, John Wiley, 2nd Ed.
- Electronics & Communication System George Kennedy and Bernard Davis, TMH 2004.
- Communication Systems– R.P. Singh, SP Sapre, Second Edition TMH, 2007.
- 4. Fundamentals of Communication Systems John G. Proakis, Masond, Salehi PEA, 2006.

II Year – II SEMESTER

T P C 0 3 2

ELECTRONIC CIRCUIT ANALYSIS LAB

Note : The students are required to design the electronic circuit and they have to perform the simulation using Multisim/ Pspice/Equivalent Licensed simulation software tool. Further they are required to verify the result using necessary hardware in the hardware laboratory.

PART A: List of Experiments :(Minimum of Ten Experiments has to be performed)

- 1. Determination of f_T of a given transistor.
- 2. Voltage-Series Feedback Amplifier
- 3. Current-Shunt Feedback Amplifier
- 4. RC Phase Shift/Wien Bridge Oscillator
- 5. Hartley/Colpitt's Oscillator
- 6. Two Stage RC Coupled Amplifier
- 7. Darlington Pair Amplifier
- 8. Bootstrapped Emitter Follower
- 9. Class A Series-fed Power Amplifier
- 10. Transformer-coupled Class A Power Amplifier
- 11. Class B Push-Pull Power Amplifier
- 12. Complementary Symmetry Class B Push-Pull Power Amplifier
- 13. Single Tuned Voltage Amplifier
- 14. Double Tuned Voltage Amplifier

PART B: Equipment required for Laboratory

Software:

- i. Multisim/ Pspice/Equivalent Licensed simulation software tool
- ii. Computer Systems with required specifications

Hardware:

- 1. Regulated Power supplies
- 2. Analog/Digital Storage Oscilloscopes
- 3. Analog/Digital Function Generators
- 4. Digital Multimeters
- 5. Decade Résistance Boxes/Rheostats
- 6. Decade Capacitance Boxes
- 7. Ammeters (Analog or Digital)
- 8. Voltmeters (Analog or Digital)

Active & Passive Electronic Components

T P C 0 3 2

ANALOG COMMUNICATIONS LAB

List of Experiments (Twelve experiments to be done) - (a. Hardware, b. MATLAB Simulink, c. MATLAB Communication tool box)

- A. Amplitude Modulation Mod. & Demod.
- B. AM DSB SC Mod. & Demod.
- C. Spectrum Analysis of Modulated signal using Spectrum Analyser
- D. Diode Detector
- E. Pre-emphasis & De-emphasis
- F. Frequency Modulation Mod. & Demod.
- G. AGC Circuits
- H. Sampling Theorem
- I. Pulse Amplitude Modulation Mod. & Demod.
- J. PWM , PPM Mod. & Demod.
- K. PLL

Equipments & Software required:

Software :

- i.) Computer Systems with latest specifications
- ii) Connected in Lan (Optional)
- iii) Operating system (Windows XP)
- iv) Simulations software (Simulink & MATLAB)

Equipment:

- 1. RPS -
- 2. CRO
- 3. Function

- 0 - 30 V - 0 - 20 M Hz.

-

 $0-1 \ M \ Hz$

- Function Generators
- 4. Components
- 5. Multimeters
- 6. Spectrum Analyser

T P C 3+1 0 3

PULSE AND DIGITAL CIRCUITS

OBJECTIVES

The student will be made

- To understand the concept of wave shaping circuits, Switching Characteristics of diode and transistor.
- To analyze different types of Multi vibrators and their design procedures.
- To Introduce to Time-base Generators and Principles of Synchronization and Frequency division.
- To Understand Sampling Gates and to Design NAND and NOR gates using various logic families.

UNIT I

LINEAR WAVE SHAPING: High pass, low pass RC circuits, their response for sinusoidal, step, pulse, square and ramp inputs. RC network as differentiator and integrator, attenuators, its applications in CRO probe, RL and RLC circuits and their response for step input, Ringing circuit.

UNIT II

NON-LINEAR WAVE SHAPING : Diode clippers, Transistor clippers, clipping at two independent levels, Transfer characteristics of clippers, Emitter coupled clipper, Comparators, applications of voltage comparators, clamping operation, clamping circuits using diode with different inputs, Clamping circuit theorem, practical clamping circuits, effect of diode characteristics on clamping voltage, Transfer characteristics of clampers.

UNIT III

SWITCHING CHARACTERISTICS OF DEVICES : Diode as a switch, piecewise linear diode characteristics, Transistor as a switch, Break down voltage consideration of transistor, saturation parameters of Transistor and their variation with temperature, Design of transistor switch, transistor-switching times.

Digital Logic gate circuits: Realization of Logic Gates using DTL, TTL, ECL and CMOS logic circuits, Comparison of logic families.

UNIT IV

MULTIVIBRATORS :

Bistable Multi Vibrator: Analysis and Design of Fixed Bias, Self Bias Bistable Multi Vibrator, Collector catching Diodes, Commutating Capacitors,

Methods of Triggering using RC network & Diode, Emitter Coupled Bistable Multi Vibrator (Schmitt trigger).

Monostable Multi Vibrator: Analysis and Design of Collector Coupled Monostable Multi Vibrator, Triggering method of a Monostable Multi Vibrator, Application of Monostable Multi Vibrator as a Voltage to Time Converter.

Astable Multi Vibrator: Analysis and Design of Collector Coupled Astable Multi vibrator, Application of Astable Multi Vibrator as a Voltage to Frequency Converter. All circuits are transistor version.

UNIT V

VOLTAGE TIME BASE GENERATORS : General features of a time base signal, methods of generating time base waveform, Miller and Bootstrap time base generators – basic principles, Transistor miller time base generator, Transistor Bootstrap time base generator.

UNIT VI

SYNCHRONIZATION AND FREQUENCY DIVISION & SAMPLING GATES : Principles of Synchronization, Frequency division in sweep circuit, Astable relaxation circuits, Monostable relaxation circuits, Synchronization of a sweep circuit with symmetrical signals.

Basic operating principles of sampling gates, Unidirectional and Bidirectional sampling gates, Reduction of pedestal in gate circuits, Applications of sampling gates.

TEXT BOOKS :

- 1. Pulse, Digital and Switching Waveforms J. Millman and H. Taub, McGraw-Hill, 1991.
- 2. Solid State Pulse circuits David A. Bell, PHI, 4th Edn., 2002 .

REFERENCES:

- 1. Pulse and Digital Circuits A. Anand Kumar, PHI, 2005.
- 2. Wave Generation and Shaping L. Strauss.
- 3. Pulse, Digital Circuits and Computer Fundamentals R.Venkataraman.

OUTCOMES

- Design linear and non-linear wave shaping circuits.
- Apply the fundamental concepts of wave shaping for various switching and signal generating circuits.
- Design different multivibrators and time base generators.

T P C 3+1 0 3

LINEAR IC APPLICATIONS

OBJECTIVES

The student will

- Study characteristics, realize circuits, design for signal analysis using Op-amp ICs.
- Study the linear and non-linear applications of operational amplifiers.
- Study IC 555 timer, PLL and VCO with their applications.
- Study and understand different types of ADCs and DACs
- Acquire skills required for designing and testing integrated circuits

UNIT I

INTEGRATED CIRCUITS: Differential Amplifier- DC and AC analysis of Dual input Balanced output Configuration, Properties of other differential amplifier configuration (Dual Input Unbalanced Output, Single Ended Input – Balanced/ Unbalanced Output), DC Coupling and Cascade Differential Amplifier Stages, Level translator.

UNIT II

Characteristics of OP-Amps, Integrated circuits-Types, Classification, Package Types and Temperature ranges, Power supplies, Op-amp Block Diagram, ideal and practical Op-amp Specifications, DC and AC characteristics, 741 op-amp & its features, FET input. Op-Amps, Op-Amp parameters & Measurement, Input & Out put Off set voltages & currents, slew rates, CMRR, PSRR, drift, Frequency Compensation technique.

UNIT III

LINEAR and NON-LINEAR APPLICATIONS OF OP- AMPS: Inverting and Non-inverting amplifier, Integrator and differentiator, Difference amplifier, Instrumentation amplifier, AC amplifier, V to I, I to V converters, Buffers. Non- Linear function generation, Comparators, Multivibrators, Triangular and Square wave generators, Log and Anti log Amplifiers, Precision rectifiers.

UNIT IV

ACTIVE FILTERS, ANALOG MULTIPLIERS AND MODULATORS:

Introduction, Butter worth filters – 1st order, 2nd order LPF, HPF filters. Band pass, Band reject and All pass filters.

Four Quadrant multiplier, balanced modulator, IC1496, Applications of analog switches and Multiplexers, Sample & Hold amplifiers.

UNIT V

TIMERS & PHASE LOCKED LOOPS: Introduction to 555 timer, functional diagram, Monostable and Astable operations and applications, Schmitt Trigger. PLL - introduction, block schematic, principles and description of individual blocks, 565 PLL, Applications of PLL – frequency multiplication, frequency translation, AM, FM & FSK demodulators. Applications of VCO (566).

UNIT VI

DIGITAL TO ANALOG AND ANALOG TO DIGITAL CONVERTERS : Introduction, basic DAC techniques, weighted resistor DAC, R-2R ladder DAC, inverted R-2R DAC, and IC 1408 DAC, Different types of ADCs – parallel Comparator type ADC, counter type ADC, successive approximation ADC and dual slope ADC.DAC and ADC Specifications, Specifications AD 574 (12 bit ADC).

TEXT BOOKS :

- Linear Integrated Circuits D. Roy Chowdhury, New Age International (p) Ltd, 2nd Edition,2003.
- 2. Op-Amps & Linear ICs Ramakanth A. Gayakwad, PHI,1987.

REFERENCES :

- 1. Design with Operational Amplifiers & Analog Integrated Circuits -Sergio Franco, McGraw Hill, 1988.
- 2. OP AMPS and Linear Integrated Circuits concepts and Applications, James M Fiore, Cenage Learning India Ltd.
- 3. Operational Amplifiers & Linear Integrated Circuits–R.F.Coughlin & Fredrick Driscoll, PHI, 6th Edition.
- 4. Operational Amplifiers C.G. Clayton, Butterworth & Company Publ.Ltd./ Elsevier, 1971.
- 5. Operational Amplifiers & Linear ICs David A Bell, Oxford Uni. Press, 3rd Edition.

OUTCOMES

- Design circuits using operational amplifiers for various applications.
- Analyze and design amplifiers and active filters using Op-amp.
- Acquire skills required for designing and testing integrated circuits
- Understand the gain-bandwidth concept and frequency response of the three basic amplifiers. Understand thoroughly the operational amplifiers with linear integrated circuits.
- Design combinational logic circuits for different applications.

T P C 3+1 0 3

CONTROL SYSTEMS

OBJECTIVES

The student will

- Learn the fundamental concepts of Control systems and mathematical modelling of the system.
- Study the concepts of time response and frequency response of the system.
- Understand the basics of stability analysis of the system.

UNIT I

INTRODUCTION

Concepts of Control Systems- Open Loop and closed loop control systems and their differences- Different examples of control systems- Classification of control systems, Feed-Back Characteristics, Effects of feedback. Mathematical models – Differential equations, Impulse Response and transfer functions - Translational and Rotational mechanical systems

UNIT II

TRANSFER FUNCTION REPRESENTATION

Transfer Function of DC Servo motor - AC Servo motor- Synchro transmitter and Receiver, Block diagram representation of systems considering electrical systems as examples -Block diagram algebra – Representation by Signal flow graph - Reduction using mason's gain formula.

UNIT III

TIME RESPONSE ANALYSIS

Standard test signals - Time response of first order systems – Characteristic Equation of Feedback control systems, Transient response of second order systems - Time domain specifications – Steady state response - Steady state errors and error constants – Effects of proportional derivative, proportional integral systems.

UNIT IV

STABILITY ANALYSIS IN S-DOMAIN

The concept of stability - Routh's stability criterion - qualitative stability and

conditional stability – limitations of Routh's stability.

Root Locus Technique:

The root locus concept - construction of root loci-effects of adding poles and zeros to G(s)H(s) on the root loci.

UNIT V FREQUENCY RESPONSE ANALYSIS

Introduction, Frequency domain specifications-Bode diagrams-Determination of Frequency domain specifications and transfer function from the Bode Diagram-Phase margin and Gain margin-Stability Analysis from Bode Plots.

STABILITY ANALYSIS IN FREQUENCY DOMAIN:

Polar Plots, Nyquist Plots Stability Analysis.

UNIT VI CLASSICAL CONTROL DESIGN TECHNIQUES

Compensation techniques – Lag, Lead, Lead-Lag Controllers design in frequency Domain, PID Controllers. State Space Analysis of Continuous Systems Concepts of state, state variables and state model, derivation of state models from block diagrams, Diagonalization- Solving the Time invariant state Equations- State Transition Matrix and it's Properties – Concepts of Controllability and Observability.

TEXT BOOKS:

- 1. Automatic Control Systems 8th edition- by B. C. Kuo 2003- John wiley and son's.,
- 2. Control Systems Engineering by I. J. Nagrath and M. Gopal, New Age International (P) Limited, Publishers, 2nd edition.

REFERENCE BOOKS:

- 1. Modern Control Engineering by Katsuhiko Ogata Prentice Hall of India Pvt. Ltd., 3rd edition, 1998.
- 2. Control Systems by N.K.Sinha, New Age International (P) Limited Publishers, 3rd Edition, 1998.

OUTCOMES

- Represent the mathematical model of a system.
- Determine the response of different order systems for various step inputs.
- Analyse the stability of the system.

T P C

3+1 0 3

DIGITAL SYSTEM DESIGN & DIGITAL IC APPLICATIONS

OBJECTIVES

The student will be introduced to

- The electrical behavior of CMOS both in static and dynamic conditions and before that study the diode/transistor-transistor logic and Emitter coupled logic.
- In this course, students can study Integrated circuits for all digital operational designs like adder, subtractor, multipliers, multiplexers, registers, counters, flip flops, encoders, decoders and memory elements like RAM and ROM.
- Design and to develop the internal circuits for different digital operations and simulate them using hardware languages using integrated circuits.
- Understand the concepts of SSI Latches and Flip-Flops and Design of Counters using Digital ICs, modeling of sequential logic integrated circuits using VHDL.

Unit-I:

Digital Design Using HDL: Design flow, program structure, History of VHDL, VHDL requirements, Levels of Abstraction, Elements of VHDL, Concurrent and Sequential Statements, Packages, Libraries and Bindings, Objects and Classes, Subprograms, Comparison of VHDL and Verilog HDL.

Unit-II:

VHDL Modelling : Simulation, Logic Synthesis, Inside a logic Synthesizer, Constraints, Technology Libraries, VHDL and Logic Synthesis, Functional Gate-Level verification, Place and Route, Post Layout Timing Simulation, Static Timing, Major Netlist formats for design representation, VHDL Synthesis-Programming Approach.

Unit-III:

Programmable Logic Devices (PLDs) & Memories: Programmable Read Only Memory, Programmable Logic Array, Programmable Array Logic Devices, ROM: Internal structure, 2D-Decoding, Commercial ROM types, timing and applications,. Static RAM: Internal structure, SRAM timing, standard, synchronous SRAMS, Dynamic RAM: Internal structure, timing, synchronous DRAMs. Design considerations of PLDs with relevant Digital ICs.

Unit-IV:

Digital Logic Families and Interfacing: Introduction to logic families, CMOS logic, CMOS steady state and dynamic electrical behavior, CMOS

104

logic families.bipolar logic, transistor-transistor logic, TTL families, CMOS/TTL interfacing, low voltage CMOS logic and interfacing, Emitter coupled logic.

Unit-V:

Combinational Logic Design: Adders & Subtractors, Ripple Adder, Look Ahead Carry Generator, Binary Parallel Adder, Binary Adder-Subtractor, ALU, Decoders, encoders, three state devices, multiplexers and demultiplexers, Code Converters, parity circuits, comparators, multipliers, Barrel Shifter, Simple Floating-Point Encoder, Cascading Comparators, Dual Priority Encoder, Design considerations with relevant Digital ICs, modeling of Circuits by using VHDL.

Unit-VI:

Sequential Logic Design: SSI Latches and Flip-Flops, Counters, Design of Counters using Digital ICs, Ring Counter, Johnson Counter, Modulus N Synchronous Counters, MSI Registers, Shift Registers, Modes of Operation of Shift Registers, Universal Shift Registers, MSI Shift Registers, Design considerations with relevant Digital ICs, modeling of circuits by using VHDL.

TEXT BOOKS:

- 1. Digital Design Principles & Practices John F.Wakerly, PHI/ Pearson Education Asia, 3rd Edition, 2005.
- 2. Designing with TTL Integrated Circuits: Robert L. / John R. Morris & Miller.

REFERENCES:

- "Fundamentals of Digital logic design with VHDL". Stephen Brown & Zvonko Vranesic, Tata McGraw Hill, 2nd edition.
- 2. VHDL Primer J. Bhasker, Pearson Education/ PHI, 3rd Edition.

OUTCOMES:

- Understand the concepts of different logics and implementations using Integrated circuits.
- Design and analyze any Digital design in real time applications.
- Extend the digital operations to any width by connecting the ICs and can also design, simulate their results using hardware description language.
- Understand the concepts of MSI Registers and Modes of Operation of Shift Registers, Universal Shift Registers.

T P C 3+1 0 3

ANTENNAS AND WAVE PROPAGATION

OBJECTIVES

The student will be able to

- understand the applications of the electromagnetic waves in free space.
- introduce the working principles of various types of antennas
- discuss the major applications of antennas with an emphasis on how antennas are employed to meet electronic system requirements.
- understand the concepts of radio wave propagation in the atmosphere.

UNIT I

ANTENNA FUNDAMENTALS: Introduction, Radiation Mechanism – single wire, 2 wire, dipoles, Current Distribution on a thin wire antenna. Antenna Parameters - Radiation Patterns, Patterns in Principal Planes, Main Lobe and Side Lobes, Beamwidths, Polarization, Beam Area, Radiation Intensity, Beam Efficiency, Directivity, Gain and Resolution, Antenna Apertures, Aperture Efficiency, Effective Height, illustrated Problems.

UNIT II

THIN LINEAR WIRE ANTENNAS: Retarded Potentials, Radiation from Small Electric Dipole, Quarter wave Monopole and Half wave Dipole – Current Distributions, Evaluation of Field Components, Power Radiated, Radiation Resistance, Beamwidths, Directivity, Effective Area and Effective Height. Natural current distributions, fields and patterns of Thin Linear Center-fed Antennas of different lengths, Radiation Resistance at a point which is not current maximum. Antenna Theorems – Applicability and Proofs for equivalence of directional characteristics, Loop Antennas: Small Loops - Field Components, Comparison of far fields of small loop and short dipole, Concept of short magnetic dipole, D and R_r relations for small loops.

UNIT III

ANTENNA ARRAYS : 2 element arrays – different cases, Principle of Pattern Multiplication, N element Uniform Linear Arrays – Broadside, Endfire Arrays, EFA with Increased Directivity, Derivation of their characteristics and comparison; Concept of Scanning Arrays. Directivity Relations (no derivations). Related Problems. Binomial Arrays, Effects of Uniform and Non-uniform Amplitude Distributions, Design Relations. Arrays with Parasitic Elements, Yagi-Uda Arrays, Folded Dipoles and their characteristics.

UNIT IV

NON-RESONANT RADIATORS : Introduction, Traveling wave radiators – basic concepts, Long wire antennas – field strength calculations and patterns, Microstrip Antennas-Introduction, Features, Advantages and Limitations, Rectangular Patch Antennas –Geometry and Parameters, Impact of different parameters on characteristics. Broadband Antennas: Helical Antennas – Significance, Geometry, basic properties; Design considerations for monofilar helical antennas in Axial Mode and Normal Modes (Qualitative Treatment).

UNIT V

VHF, UHF AND MICROWAVE ANTENNAS : Reflector Antennas : Flat Sheet and Corner Reflectors. Paraboloidal Reflectors – Geometry, characteristics, types of feeds, F/D Ratio, Spill Over, Back Lobes, Aperture Blocking, Off-set Feeds, Cassegrain Feeds.

Horn Antennas – Types, Optimum Horns, Design Characteristics of Pyramidal Horns; Lens Antennas – Geometry, Features, Dielectric Lenses and Zoning, Applications, Antenna Measurements – Patterns Required, Set Up, Distance Criterion, Directivity and Gain Measurements (Comparison, Absolute and 3-Antenna Methods).

UNIT VI

WAVE PROPAGATION : Concepts of Propagation – frequency ranges and types of propagations. Ground Wave Propagation–Characteristics, Parameters, Wave Tilt, Flat and Spherical Earth Considerations. Sky Wave Propagation – Formation of Ionospheric Layers and their Characteristics, Mechanism of Reflection and Refraction, Critical Frequency, MUF and Skip Distance – Calculations for flat and spherical earth cases, Optimum Frequency, LUHF, Virtual Height, Ionospheric Abnormalities, Ionospheric Absorption.

Fundamental Equation for Free-Space Propagation, Basic Transmission Loss Calculations. Space Wave Propagation – Mechanism, LOS and Radio Horizon. Tropospheric Wave Propagation – Radius of Curvature of path, Effective Earth's Radius, Effect of Earth's Curvature, Field Strength Calculations, M-curves and Duct Propagation, Tropospheric Scattering.

TEXT BOOKS

- Antennas for All Applications John D. Kraus and Ronald J. Marhefka, 3rd Edition, TMH, 2003.
- Electromagnetic Waves and Radiating Systems E.C. Jordan and K.G. Balmain, PHI, 2nd Edition, 2000.

REFERENCES

- Antenna Theory C.A. Balanis, John Wiley and Sons, 2nd Edition, 2001.
- 2. Antennas and Wave Propagation K.D. Prasad, Satya Prakashan, Tech India Publications, New Delhi, 2001.
- Transmission and Propagation E.V.D. Glazier and H.R.L. Lamont, The Services Text Book of Radio, vol. 5, Standard Publishers Distributors, Delhi.
- Electronic and Radio Engineering F.E. Terman, McGraw-Hill, 4th Edition, 1955.
- 5. Antennas John D. Kraus, McGraw-Hill, 2nd Edition, 1988.

OUTCOMES

- Identify basic antenna parameters.
- Design and analyze wire antennas, loop antennas, reflector antennas, lens antennas, horn antennas and microstrip antennas
- Quantify the fields radiated by various types of antennas
- Design and analyze antenna arrays
- Analyze antenna measurements to assess antenna's performance
- Identify the characteristics of radio wave propagation

III	Year – I SEMESTER	Т	Р	С
		0	3	2

Pulse & Digital Circuits Lab

- 1. Linear wave shaping.
- 2. Non Linear wave shaping Clippers.
- 3. Non Linear wave shaping Clampers.
- 4. Transistor as a switch.
- 5. Study of Logic Gates & Some applications.
- 6. Study of Flip-Flops & some applications.
- 7. Sampling Gates.
- 8. Astable Multivibrator.
- 9. Monostable Multivibrator.
- 10. Bistable Multivibrator.
- 11. Schmitt Trigger.
- 12. UJT Relaxation Oscillator.
- 13. Bootstrap sweep circuit.

EQUIPMENT REQUIRED FOR LABORATORY:

- 1. RPS 0 30 V
- 2. CRO 0 20 M Hz.
- 3. Function Generators 0 1 M Hz
- 4. Components
- 5. Multi Meters

T P C 0 3 2

LIC APPLICATIONS LAB

Minimum Twelve Experiments to be conducted :

- 1. Study of ICs IC 741, IC 555, IC 565, IC 566, IC 1496 functioning, parameters and Specifications.
- 2. OP AMP Applications Adder, Subtractor, Comparator Circuits.
- 3. Integrator and Differentiator Circuits using IC 741.
- 4. Active Filter Applications LPF, HPF (first order)
- 5. Active Filter Applications BPF, Band Reject (Wideband) and Notch Filters.
- 6. IC 741 Oscillator Circuits Phase Shift and Wien Bridge Oscillators.
- 7. Function Generator using OP AMPs.
- 8. IC 555 Timer Monostable Operation Circuit.
- 9. IC 555 Timer Astable Operation Circuit.
- 10. Schmitt Trigger Circuits using IC 741 and IC 555.
- 11. IC 565 PLL Applications.
- 12. IC 566 VCO Applications.
- 13. Voltage Regulator using IC 723.
- 14. Three Terminal Voltage Regulators 7805, 7809, 7912.
- 15. 4 bit DAC using OP AMP.

EQUIPMENT REQUIRED FOR LABORATORIES:

- 1. RPS
- 2. CRO
- 3. Function Generator
- 4. Multi Meters
- 5. IC Trainer Kits (Optional)
- 6. Bread Boards
- 7. Components:- IC741, IC555, IC565, IC1496, IC723, 7805, 7809, 7912 and other essential components.
- 8. Analog IC Tester

Digital System Design & DICA Laboratory

The students are required to design and draw the internal structure of the following Digital Integrated Circuits and to develop VHDL source code, perform simulation using relevant simulator and analyze the obtained simulation results using necessary synthesizer. Further, it is required to verify the logic with necessary hardware.

List of Experiments:

- 1. Realization of Logic Gates
- 2. 3 to 8 Decoder- 74138
- 3. 8*1 Multiplexer-74151 and 2*1 De-multiplexer-74155
- 4. 4-Bit Comparator-7485.
- 5. D Flip-Flop- 7474
- 6. Decade Counter- 7490
- 7. 4 Bit Counter-7493
- 8. Shift Register-7495
- 9. Universal shift register-74194/195
- 10. Ram (16*4)-74189 (read and write operations)
- 11. ALU

Equipment Required:

- 1. Xilinix ISE software-latest version
- 2. Personal computer with necessary pheripherals
- 3. Hardware kits- Various FPGA families.

С

Т

A

Р

T P C 3 0 2

INTELLECTUAL PROPERTY RIGHTS AND PATENTS

Unit I

Introduction to Intellectual Property Law – Evolutionary past – Intellectual Property Law Basics - Types of Intellectual Property - Innovations and Inventions of Trade related Intellectual Property Rights – Agencies Responsible for Intellectual Property Registration – Infringement -Regulatory – Over use or Misuse of Intellectual Property Rights -Compliance and Liability Issues.

Unit II

Introduction to Copyrights – Principles of Copyright – Subject Matters of Copyright – Rights Afforded by Copyright Law –Copyright Ownership – Transfer and Duration – Right to Prepare Derivative Works –Rights of Distribution – Rights of performers – Copyright Formalities and Registration – Limitations – Infringement of Copyright – International Copyright Law-Semiconductor Chip Protection Act.

Unit III

Introduction to Patent Law – Rights and Limitations – Rights under Patent Law – Patent Requirements – Ownership and Transfer – Patent Application Process and Granting of Patent – Patent Infringement and Litigation – International Patent Law – Double Patenting – Patent Searching – Patent Cooperation Treaty – New developments in Patent Law- Invention Developers and Promoters.

Unit IV

Introduction to Trade Mark – Trade Mark Registration Process – Post registration procedures – Trade Mark maintenance – Transfer of rights – Inter parties Proceedings – Infringement – Dilution of Ownership of Trade Mark – Likelihood of confusion – Trade Mark claims – Trade Marks Litigation – International Trade Mark Law

Unit V

Introduction to Trade Secrets – Maintaining Trade Secret – Physical Security – Employee Access Limitation – Employee Confidentiality Agreement –

Trade Secret Law – Unfair Competition – Trade Secret Litigation – Breach of Contract – Applying State Law.

Unit VI

Introduction to Cyber Law – Information Technology Act - Cyber Crime and E-commerce – Data Security – Confidentiality – Privacy - International aspects of Computer and Online Crime.

REFERENCE BOOKS:

- 1. Deborah E.Bouchoux: "Intellectual Property". Cengage learning, New Delhi
- 2. Kompal Bansal & Parishit Bansal "Fundamentals of IPR for Engineers", BS Publications (Press)
- 3. Cyber Law. Texts & Cases, South-Western's Special Topics Collections
- 4. Prabhuddha Ganguli: 'Intellectual Property Rights'' Tata Mc-Graw Hill, New Delhi
- 5. Richard Stim: "Intellectual Property", Cengage Learning, New Delhi.
- 6. R. Radha Krishnan, S. Balasubramanian: "Intellectual Property Rights", Excel Books. New Delhi.
- M. Ashok Kumar and Mohd.Iqbal Ali: "Intellectual Property Right" Serials Pub.

III Year – II SEMESTERTPC3+103

MICRO PROCESSORS AND MICRO CONTROLLERS

OBJECTIVES : The student will

- learn concepts of microprocessor, different addressing modes and programming of 8086.
- understand interfacing of 8086, with memory and other peripherals.
- learn concept of DMA, USART RS-232 and PIC controller.
- study the features of advanced processors and Pentium processors.
- study the features of 8051 Microcontroller, its instruction set and also other controllers.

UNIT-I: 8086/8088 MICROPROCESSORS

Register organization of 8086, Architecture, signal description of 8086, physical memory organization, general bus operation, I/O addressing capability, special purpose activities, Minimum mode, maximum mode of 8086 system and timings, the processor 8088, machine language instruction formats, addressing mode of 8086, instruction set off 8086,assembler directives and operators.

UNIT-II: PROGRAMMING WITH 8086 MICROPROCESSOR

Machine level programs, programming with an assembler, Assembly language programs, introduction to stack, stack structure of 8086/8088, interrupts and interrupt service routines, interrupt cycle of 8086, non-mask able interrupt and mask able interrupts, interrupt programming.

UNIT-III: BASIC AND SPECIAL PURPOSE PROGRAMMABLE PERIPHERALS AND THEIR INTERFACING WITH 8086/88

Semiconductor memory interfacing, dynamic RAM interfacing, interfacing i/o ports, PIO 8255 modes of operation of 8255,interfacing to D/A and A/D converters, stepper motor interfacing, control of high power devices using 8255.Programmable interrupt controller 8259A, the keyboard /display controller8279, programmable communication interface 8251 USART, DMA Controller 8257.

UNIT-IV: ADVANCED MICRO PROCESSORS

Salient features of 0386DX, architecture and signal description of 80386, register organization of 80386 and addressing modes, data types of 80386,

real address mode of 80386, protected mode of 80386, segmentation and Paging, virtual 8086 mode and enhanced mode. Instruction set of 80386. The coprocessor 80387.

UNIT-V: 8051 MICROCONTROLLER

Introduction to microcontrollers, 8051Microcontrollers, 8051pin description, connections, I/O ports and memory organization, MCS51addressing modes and instructions, assembly language programming tools.

UNIT-VI: PIC MICROCONTROLLERS AND ARM 32-BIT MICROCONTROLLER

Overview and features, PIC16Cx/7X instructions, interrupts in PIC 16C61/71, PIC 16F8XX Flash controllers, I/O ports and timers. Introduction to 16/32 Bit processors, ARM architecture and organization, ARM / Thumb programming model, ARM / Thumb instruction set.

TEXT BOOKS:

- 1. A.K.Ray, K.M.Bhurchandi ,"Advanced Microprocessors and Peripherals", Tata McGraw Hill Publications, 2000.
- 2. N.Sentil Kumar, M.Saravanan, S.Jeevananthan, "Microprocessors and Microcontrollers", Oxford University Press, 2010.

REFERENCES:

- 1. Ajay V Deshmukh, "Microcontrollers", TATA McGraw Hill publications, 2012.
- 2. Krishna Kant, "Microprocessors and Microcontrollers", PHI Publications, 2010.

OUTCOMES

- develop programs for different addressing modes.
- perform 8086 interfacing with different peripherals and implement programs.
- describe the key features of serial and parallel communication and able to
- Design a microcontroller for simple applications.

T P C 3+1 0 3

DIGITAL SIGNAL PROCESSING

OBJECTIVES

The student will be able to

- Define and use Discrete Fourier Transforms (DFTs)
- Use Z transforms and discrete time Fourier transforms to analyze a digital system.
- Understand simple finite impulse response filters
- Learn the design procedures used for filter bank
- Learn to program a DSP processor to filter signals

UNIT I

INTRODUCTION: Introduction to Digital Signal Processing: Discrete time signals & sequences, linear shift invariant systems, stability, and causality. Linear constant coefficient difference equations. Frequency domain representation of discrete time signals and systems.

UNIT II

DISCRETE FOURIER SERIES & FOURIER TRANSFORMS: Properties of discrete Fourier series, DFS representation of periodic sequences, Discrete Fourier transforms: Properties of DFT, linear convolution of sequences using DFT,Computation of DFT, Fast Fourier transforms (FFT) - Radix-2 decimation in time and decimation in frequency FFT Algorithms, Inverse FFT.

UNIT III

REALIZATION OF DIGITAL FILTERS: Review of Z-transforms, Applications of Z – transforms, solution of difference equations - digital filters, Block diagram representation of linear constant-coefficient difference equations, Basic structures of IIR systems, Transposed forms, Basic structures of FIR systems, System function,

UNIT IV

IIR & FIR DIGITAL FILTERS: Analog filter approximations – Butter worth and Chebyshev, Design of IIR Digital filters from analog filters, Design Examples: Analog-Digital transformations Characteristics of FIR Digital Filters, frequency response. Design of FIR Digital Filters using Window Techniques, Frequency Sampling technique, Comparison of IIR & FIR filters.

UNIT V

MULTIRATE DIGITAL SIGNAL PROCESSING: Decimation, interpolation, sampling rate conversion, Implementation of sampling rate conversion.

116

UNIT VI

INTRODUCTION TO DSP PROCESSORS: Introduction to programmable DSPs: Multiplier and Multiplier Accumulator (MAC), Modified Bus Structures and Memory Access schemes in DSPs Multiple access memory ,multiport memory, VLSI architecture, Pipelining, Special addressing modes, On-Chip Peripherals. Architecture of TMS 320C5X-Introduction, Bus Structure, Central Arithmetic Logic Unit, Auxiliary Register, Index Register, Block Move Address Register, Parallel Logic Unit, Memory mapped registers, program controller, Some flags in the status registers, On-chip peripherals.

TEXT BOOKS:

- 1. Digital Signal Processing, Principles, Algorithms, and Applications: John G. Proakis, Dimitris G.Manolakis, Pearson Education / PHI, 2007.
- 2. Discrete Time Signal Processing A.V.Oppenheim and R.W. Schaffer, PHI.
- 3. Digital Signal Processors Architecture, Programming and Applications, B.Venkataramani, M.Bhaskar, TATA McGraw Hill, 2002.
- 4. Digital Signal Processing K Raja Rajeswari, I.K. International Publishing House.

Reference Books:

- 1. Digital Signal Processing: Andreas Antoniou, TATA McGraw Hill, 2006
- 2. Digital Signal Processing: MH Hayes, Schaum's Outlines, TATA Mc-Graw Hill, 2007.
- 3. DSP Primer C. Britton Rorabaugh, Tata McGraw Hill, 2005.
- 4. Fundamentals of Digital Signal Processing using Matlab Robert J. Schilling, Sandra
- L. Harris, Thomson, 2007.
- Digital Signal Processing Alan V. Oppenheim, Ronald W. Schafer, PHI Ed., 2006

OUTCOMES

- Estimate the spectra of signals that are to be processed by a discrete time filter, and to verify the performance of a variety of modern and classical spectrum estimation techniques.
- Design and simulate a digital filter
- Design new digital signal processing systems.
- Design and realize FIR, IIR filters
- Program a DSP processor to filter signals

T P C 3+1 0 3

DIGITAL COMMUNICATIONS

OBJECTIVES

The student will be able to

- understand pulse digital modulation systems such as PCM,DPCM and DM.
- understand various digital modulation techniques and able to analyze various systems for their performance in terms of probability of error.
- study the concept of entropy and need for source coding.
- study Block codes, cyclic codes and convolution codes.

UNIT I

PULSE DIGITAL MODULATION: Elements of digital communication systems, advantages of digital communication systems, Elements of PCM: Sampling, Quantization & Coding, Quantization error, Companding in PCM systems. Differential PCM systems (DPCM). Delta modulation, its draw backs, adaptive delta modulation, comparison of PCM and DM systems, noise in PCM and DM systems.

UNIT II

DIGITAL MODULATION TECHNIQUES: Introduction, ASK, FSK, PSK, DPSK, DEPSK, QPSK, M-ary PSK, ASK, FSK, similarity of BFSK and BPSK.

UNIT III

DATA TRANSMISSION : Base band signal receiver, probability of error, the optimum filter, matched filter, probability of error using matched filter, coherent reception, non-coherent detection of FSK, calculation of error probability of ASK, BPSK, BFSK,QPSK.

UNIT IV

INFORMATION THEORY: Discrete messages, concept of amount of information and its properties. Average information, Entropy and its properties. Information rate, Mutual information and its properties.

UNIT V

SOURCE CODING: Introductions, Advantages, Shannon's theorem, Shanon-Fano coding, Huffman coding, efficiency calculations, channel capacity of discrete and analog Channels, capacity of a Gaussian channel, bandwidth –S/N trade off.

UNIT VI

LINEAR BLOCK CODES: Introduction, Matrix description of Linear Block codes, Error detection and error correction capabilities of Linear block codes, Hamming codes, Binary cyclic codes, Algebraic structure, encoding, syndrome calculation, BCH Codes.

CONVOLUTION CODES: Introduction, encoding of convolution codes, time domain approach, transform domain approach. Graphical approach: state, tree and trellis diagram decoding using Viterbi algorithm.

TEXT BOOKS:

- 1. Digital communications Simon Haykin, John Wiley, 2005
- Principles of Communication Systems H. Taub and D. Schilling, TMH, 2003

REFERENCES:

- 1. Digital and Analog Communication Systems Sam Shanmugam, John Wiley, 2005.
- Digital Communications John Proakis, TMH, 1983. Communication Systems Analog & Digital – Singh & Sapre, TMH, 2004.
- 3. Modern Analog and Digital Communication B.P.Lathi, Oxford reprint, 3rd edition, 2004.

OUTCOMES

- analyze the performance of a Digital Communication System for probability of error and are able to design a digital communication system.
- analyze various source coding techniques
- Compute and analyze Block codes, cyclic codes and convolution codes.
- Design a coded communication system.

T P C 3+1 0 3

MICROWAVE ENGINEERING

OBJECTIVES

The student will

- Understand fundamental electrical characteristics of waveguides and transmission lines through electromagnetic field analysis.
- Understand the basic properties of Polarization and Ferrite materials composition in the case of waveguide components.
- Understand the multiport junction concept for splitting the microwave energy in a desired direction.
- Understand the function, design, and integration of the major microwave components like oscillator, modulator, power amplifier, filter, and mixer in building a Microwave test bench setup for measurements.

UNIT I

MICROWAVE TRANSMISSION LINES: Introduction, Microwave Spectrum and Bands, Applications of Microwaves. Rectangular Waveguides – TE/TM mode analysis, Expressions for Fields, Characteristic Equation and Cut-off Frequencies, Filter Characteristics, Dominant and Degenerate Modes, Sketches of TE and TM mode fields in the cross-section, Mode Characteristics – Phase and Group Velocities, Wavelengths and Impedance Relations; Power Transmission and Power Losses in Rectangular Guide, Impossibility of TEM mode. Related Problems.

UNIT II

CIRCULAR WAVEGUIDES: Introduction, Nature of Fields, Characteristic Equation, Dominant and Degenerate Modes. Microstrip Lines– Introduction, Zo Relations, Effective Dielectric Constant, Losses, Q factor.

Cavity Resonators– Introduction, Rectangular and Cylindrical Cavities, Dominant Modes and Resonant Frequencies, Q factor and Coupling Coefficients, Excitation techniques- waveguides and cavities, Related Problems.

UNIT III

WAVEGUIDE COMPONENTS AND APPLICATIONS - I :Coupling Mechanisms – Probe, Loop, Aperture types. Waveguide Discontinuities –

Waveguide irises, Tuning Screws and Posts, Matched Loads. Waveguide Attenuators – Resistive Card, Rotary Vane types; Waveguide Phase Shifters – Dielectric, Rotary Vane types. Scattering Matrix– Significance, Formulation and Properties. S-Matrix Calculations for – 2 port Junction, Eplane and H-plane Tees, Magic Tee, Hybrid Ring; Directional Couplers – 2Hole, Bethe Hole types, Ferrite Components– Faraday Rotation, S-Matrix Calculations for Gyrator, Isolator, Circulator, Related Problems.

UNIT - IV

MICROWAVE TUBES :Limitations and Losses of conventional tubes at microwave frequencies.

Microwave tubes – O type and M type classifications. O-type tubes : 2 Cavity Klystrons – Structure, Reentrant Cavities, Velocity Modulation Process and Applegate Diagram, Bunching Process and Small Signal Theory – Expressions for o/p Power and Efficiency. Reflex Klystrons – Structure, Applegate Diagram and Principle of working, Mathematical Theory of Bunching, Power Output, Efficiency, Electronic Admittance; Oscillating Modes and o/p Characteristics, Electronic and Mechanical Tuning, Related Problems.

UNIT V

HELIX TWTS: Significance, Types and Characteristics of Slow Wave Structures; Structure of TWT and

Suppression of Oscillations, Nature of the four Propagation Constants.

M-type Tubes

Introduction, Cross-field effects, Magnetrons – Different Types, 8-Cavity Cylindrical Travelling Wave.

Magnetron – Hull Cut-off and Hartree Conditions, Modes of Resonance and PI-Mode Operation, Separation of PI-Mode, o/p characteristics.

UNIT VI

MICROWAVE SOLID STATE DEVICES: Introduction, Classification, Applications. TEDs – Introduction, Gunn Diode – Principle, RWH Theory, Characteristics, Basic Modes of Operation, Oscillation Modes. Avalanche Transit Time Devices – Introduction, IMPATT and TRAPATT Diodes – Principle of Operation and Characteristics.

MICROWAVE MEASUREMENTS: Description of Microwave Bench – Different Blocks and their Features, Precautions; Microwave Power Measurement – Bolometer Method. Measurement of Attenuation, Frequency, VSWR, Cavity Q. Impedance Measurements.

TEXT BOOKS :

- 1. Microwave Devices and Circuits Samuel Y. Liao, PHI, 3rd Edition, 1994.
- 2. Microwave Principles Herbert J. Reich, J.G. Skalnik, P.F. Ordung and H.L. Krauss, CBS Publishers and Distributors, New Delhi, 2004.

REFERENCES :

- 1. Foundations for Microwave Engineering R.E. Collin, IEEE Press, John Wiley, 2nd Edition, 2002.
- Microwave Circuits and Passive Devices M.L. Sisodia and G.S.Raghuvanshi, Wiley Eastern Ltd., New Age International Publishers Ltd., 1995.
- 3. Microwave Engineering Passive Circuits Peter A. Rizzi, PHI, 1999.
- 4. Microwave Engineering G S N Raju, I K International
- 5. Microwave and Radar Engineering G Sasibhushana Rao Pearson
- 6. Electronic and Radio Engineering F.E. Terman, McGraw-Hill, 4th ed., 1955.

OUTCOMES : After going through this course the student will

- Gain knowledge of transmissionlines and waveguide structures and how they are used as elements in impedance matching and filter circuits.
- Apply analysis methods to determine circuit properties of passive or active microwave devices.
- Gain knowledge and understanding of microwave analysis methods.
- Distinguish between M-type and O-type tubes
- Analyze and measure various microwave parameters using a Microwave test bench

T P C 3+1 0 3

Open Elective

Open Electives:

- 1. Bio Medical Engineering
- 2. Fuzzy & Neural Networks
- 3. Image Processing (not for ECE Students)
- 4. Principles of Signals, Systems and Communications (Not for ECE Students)
- 5. Electronic Instrumentation (Not for ECE Students)

Note: ECE Students can also Choose the OPEN ELECTIVES Offered by any Other Department.

BIO-MEDICAL ENGINEERING (OPEN ELECTIVE)

UNIT-I:

INTRODUCTION TO BIOMEDICAL INSTRUMENTATION: Age of Biomedical Engineering, Development of Biomedical Instrumentation, Man Instrumentation System, Components of the Man-Instrument System, Physiological System of the Body, Problems Encountered in Measuring a Living System, Sources of Bioelectric Potentials, Muscle, Bioelectric Potentials, Sources of Bioelectric Potentials, Resting and Action Potentials, Propagation of Action Potential, Bioelectric Potentials-ECG, EEG and EMG, Envoked Responses.

UNIT-II:

ELECTRODES AND TRANSDUCERS: Introduction, Electrode Theory, Biopotential Electrodes, Examples of Electrodes, Basic Transducer Principles, Biochemical Transducers, The Transducer and Transduction Principles, Active Transducers, Passive Transducers, Transducers for Biomedical Applications, Pulse Sensors, Respiration Sensor, Transducers with Digital Output.

UNIT-III:

CARDIOVASCULAR SYSTEM AND MEASUREMENTS: The Heart and Cardiovascular System, Electro Cardiography, Blood Pressure Measurement, Measurement of Blood Flow and Cardiac Output, Measurement of Heart Sound, Plethysmography.

MEASUREMENTS IN THE RESPIRATORY SYSTEM: The Physiology of The Respiratory System, Tests and Instrumentation for The Mechanics of Breathing, Respiratory Therapy Equipment.

UNIT-IV:

PATIENT CARE AND MONITORING: Elements of Intensive-Care Monitoring, Patient Monitoring Displays, Diagnosis, Calibration and Repair ability of Patient-Monitoring Equipment, Other Instrumentation for Monitoring Patients, Organization of the Hospital for Patient-Care Monitoring, Pacemakers, Defibrillators, Radio Frequency Applications of Therapeutic use.

THERAPEUTIC AND PROSTHETIC DEVICES: Audiometers and Hearing Aids.

Myoelectric Arm, Laparoscope, Ophthalmology Instruments, Anatomy of Vision,.

Electrophysiological Tests, Ophthalmoscope, Tonometer for Eye Pressure Measurement.

Diathermy, Clinical Laboratory Instruments, Biomaterials, Stimulators.

UNIT-V:

DIAGNOSTIC TECHNIQUES AND BIO-TELEMETRY: Principles of Ultrasonic Measurement, Ultrasonic Imaging, Ultrasonic Applications of Therapeutic Uses, Ultrasonic Diagnosis, X-Ray and Radio-Isotope Instrumentations, CAT Scan, Emission Computerized Tomography, MRI, Introduction to Biotelemetry, Physiological Parameters Adaptable to Biotelemetry, The Components of Biotelemetry System, Implantable Units, Telemetry for ECG Measurements during Exercise, Telemetry for Emergency Patient Monitoring.

UNIT-VI:

MONITORS, RECORDERS AND SHOCK HAZARDS: Biopotential Amplifiers, Monitors, Recorders, Shock Hazards and Prevention,

Physiological Effects and Electrical Current, Shock Hazards from Electrical Equipment, Methods of Accident Prevention, Isolated Power Distribution System.

Text Books:

- 1. "Bio-Medical Electronics and Instrumentation", Onkar N. Pandey, Rakesh Kumar, Katson Books.
- 2. "Bio-Medical Instrumentation", Cromewell, Wiebell, Pfeiffer

References:

- "Introduction to Bio-Medical Equipment Technology", 4th Edition, Joseph J. Carr, John M. Brown, Pearson Publications.
- 2. "Hand Book of Bio-Medical Instrumentation", Khandapur. McGrawHill

125

Image Processing (OPEN ELECTIVE)

Unit: 1

Introduction to Image Processing:

Overview of Image Processing, Nature of Image Processing, Image Processing Computer Graphics, Signal Processing, Machine Vision, video Processing, Optics, Statistics, Digital Image Representation, Types of Images, Digital Image Processing Operations, Fundamental steps in Image Processing, Image Processing Applications.

Digital Imaging System

Digital Imaging System:

Physical Aspects of Imaging Acquisition, Biological Aspects of Image Acquisition, Properties of Human Visual System, Review of Digital Camera, Sampling and Quantization, Image Quality – *Optical Resolution, Image Display Device and Device Resolution*, Digital Halftone Process – *Random Dithering, Ordered Dithering, Non-Periodic Dithering*, Image Storage and File Formats – Need for File Format

Types of File Formats – *GIF*, *JPEG*, *PNG*, *DICOM*, *SVG* Structure of TIFF File Format.

Unit: 2

Digital Image Processing Operations: Basic Relationship and Distance Metrics, Classification of Image Processing Operations, Arithmetic and Logical Operations, Geometric Operations, Image Interpolation Techniques, Set Operations, Statistical Operations, Convolution and Correlation Operations, Data Structures and Image Processing Applications Development – Relational Structures, Hierarchical Data Structures, Pyramids, Quadtrees, Application Development.

Digital Image Transforms: Need for Image Transforms, Spatial Frequencies in Image Processing, Introduction to Fourier Transform, Discrete Fourier Transform, Fast Fourier Transform and its algorithm, Properties of Fourier transform – *Sampling Theorem, Parseval's Theorem*, Discrete Cosine Transform, Discrete Sine Transform, Walsh Transform, Hadamard Transform, Haar Transform, Slant Transform, SVD and KL Transforms *or Hotelling Transform*.

Unit: 3

Image Enhancement: Image Quality and Need for Image Enhancement, Image Quality Metrics, Image Enhancement Point Operations Linear and

Non-linear Functions, Piecewise Linear Functions, Histogram-based Techniques, Spatial Filtering Concepts, Image Smoothing Spatial Filters and its design, Image Sharpening Spatial Filters Frequency Domain Filtering

Image Restoration: Image Degradation (Restoration) Model, Categories of Image Degradations, Noise Modeling, Blur and Distortions, Image Restoration in the Presence of Noise Only, Mean Filters, Order-statistics Filters, Image Restoration Techniques, Constrained and Unconstrained Methods, Geometrical Transforms for Image Restoration.

Unit: 4

Image Compression:

Image Compression Model, Compression Algorithm and its types – Entropy Coding, Predictive Coding, Transform Coding, Layered Coding, Types of Redundancy – Coding Redundancy, Inter-pixel Redundancy, Psychovisual Redundancy, Chromatic Redundancy.

Lossless Compression Algorithms, Run-length Coding, Huffman Coding, Shannon–Fano Coding, Bit-plane Coding, Arithmetic Coding, Lossless Predictive Coding, Lossy Compression Algorithms, Block Transform Coding, Image and Video Compression standards, JPEG, Video Compression – MPEG.

Unit: 5

Image Segmentation:

Introduction – Classification of Image Segmentation Algorithms, Detection of Discontinuities, Edge Detection – Staged in Edge Detection – Types of Edge Detectors, First-order Edge Detection Operators – Second-order Derivative Filters, Edge Operator Performance, Edge Linking Algorithms, Principle of Thresholding - Effect of Noise over Threshold Process and Peakiness Test - Parametric Methods, Non-parametric Methods, Principle of Region- growing –Dynamic Segmentation approaches , Validation of Segmentation Algorithms.

Unit: 6

Colour Image Processing:

Introduction – Colour Fundamentals, Devices for Colour Imaging, Colour Image Storage and Processing – Colour Models – RGB Colour Model, HIS Colour Model, HSV Colour Model, HLS Colour Model, TV Colour Model–

127

YUV Model, YIQ Model, Y $C_b\,C_r$ Colour Model, Printing Colour Models-CMK and CMYK Models.

Colour Quantization – Popularity Algorithm, Median-cut Algorithm, Octreebased Algorithm, Pseudo Colour Image Processing.

Full Colour Processing – Colour Transformation – Image Filters for Colour Images – Noise in Colour Images, Colour Image Segmentation– Thresholding, K-means Clustering Technique, RGB Colour Space Segmentation, Colour Features.

Text Books:

- 1. S.Sridhar, "Digital Image Processing" Oxford Publishers, 2011
- S.Jayaraman, S.Esakkirajan, T.Veerakumar, "Digital Image Processing" Mc Graw Hill Publishers, 2009

Reference Books:

- 1. Rafael C.Gonzalez and Richard E. Woods, "Digital Image Processing" Pearson Education, 2011.
- 2. B.Chanda and D. Dutta Majumder, "Digital Image Processing and Analysis" Prentice Hall of India, 2011/2012 (Print).
- 3. Anil K. Jain, "Fundamentals of Digital Image Processing," Prentice Hall of India, 2012.
- 4. Milan Sonka, Hlavac & Boyle "Digital Image Processing and Computer Vision," Cengage Learning Publishers, 2010 (Reprinted).

Principles of Signals, Systems and Communications (OPEN ELECTIVE)

Unit – I

Signal Analysis: Introduction, Fourier Series - Trigonometric Fourier Series, Complex Exponential Fourier Series; Complex Fourier Spectrum – Time Domain and Frequency Domain Representation of a Signal; Fourier Transform - Analysis of a Non Periodic Function over entire interval; Fourier Transform Involving Impulse Function; Properties of Fourier Transform and Significance- Convolution Integral, Fourier Transform of Periodic Functions.

Unit – II

Linear Systems: Introduction; System Function – Representation of a function f(t) and its response r(t), Definition of System Function; Distortionless Transmission – Band width of a system, Rise Time and System Band Width; Energy Signals and Power Signals, Energy and Power Spectral Densities; Correlation – Cross and Auto Correlation and their properties.

Unit – III

Amplitude Modulation: Introduction to Communication System, Need for Modulation, Types of Amplitude Modulations, AM-SC-DSB-SC & SSB-SC, AM-DSB, SSB & VSB, Power and BW requirements, Generation of AM, DSB-SC, SSB-SC; Demodulation of AM-: Diode detectors.

Unit – IV

Angle Modulation: Frequency & Phase Modulations, Advantages of FM over AM, Bandwidth consideration, Narrow band and Wide band FM, Comparison of FM & PM, FM Modulators – Direct Method and Indirect or Armstrong method of generations; FM Demodulators- Slope Detection, Balanced Slope, Foster Seeley and Ratio Detectors.

Unit – V

Pulse Modulations: Sampling Theorem – Nyquist Interval, Aliasing, Signal recovery from its sampled version; Flat Top and Natural Sampling, PAM-PAM Modulation and Demodulation, PWM and PPM, Time Division

Multiplexing, Frequency Division Multiplexing and Comparison between TDM and FDM.

Unit – VI

Pulse Code Modulations: Digital Representation of Analog Signal-Quantization of Signals, Quantization Error, Pulse Code Modulation- PCM System, Line Codes and their properties, Delta Modulation, Adaptive DM and comparisons.

Digital Modulation: ASK, FSK, PSK and DPSK, QPSK demodulation, Coherent and Non-coherent Reception, Comparison of Binary and Quaternary Modulation Schemes, M-ary modulation techniques.

TEXT BOOKS:

- Communication Systems Analog and Digital R.P. Singh and SD Sapre, TMH, 2nd Edition, 2008
- Principles of Communication Systems- H. Taub and D. Schilling, TMH, 2003.

REFERENCE BOOKS:

- Modern Digital and Analog Communication Systems B.P. Lathi, Oxford 3rd Edition.
- 2. Communication Systems Simon Haykin, John Wiley, 3rd Edition
- Digital and Analog Communication Systems K Sam Shanmugam, WSE, 2006.
- Electronic & Communication Systems Kennedy and Davis, TMH, 4th Edition, 2004.

MICROPROCESSORS AND MICROCONTROLLERS LAB

The students are required to develop the necessary Algorithm, Flowchart and Assembly Language Program Source Code for executing the following functions using MASM/TASM software and to verify the results with necessary Hardware Kits.

PART-I: MICROPROCESSOR 8086

- 1. Introduction to MASM/TASM.
- Arithmetic operation- Multi byte Addition and Subtraction, Multiplication and Division- Signed and unsigned Arithmetic operation, ASCII- Arithmetic operation.
- 3. Logic operations-Shift and rotate- Converting packed BCD to unpacked BCD, BCD to ASCII conversion.
- 4. By using string operation and Instruction prefix: Move Block, Reverse string, Sorting, Inserting, Deleting, Length of the string, String comparison.
- 5. DOS/BIOS programming : Reading keyboard (Buffered with and without echo) Display characters, Strings.

PART-II: INTERFACING WITH MICROPROCESSOR

- 1. 8259 Interrupt Controller-Generate an interrupt using 8259 timer.
- 2. 8279 Keyboard Display- Write a program to display a string of characters.
- 3. 8255 PPI-Write ALP to generate sinusoidal wave using PPI.
- 4. 8251 USART-Write a program in ALP to establish Communication between two processors.

PART-III: MICROCONTROLLER 8051

- 1. Reading and Writing on a parallel port.
- 2. Timer in different modes.
- 3. Serial communication implementation.

PART-IV: INTERFACING WITH MICROCONTROLLER

Write C programs to interface 8051 chip to Interfacing modules to Develop single chip solutions.

- 1. Simple Calculator using 6 digit seven segment display and Hex Keyboard interface to 8051.
- 2. Alphanumeric LCD panel and Hex keypad input interface to 8051.
- 3. External ADC and Temperature control interface to 8051.
- 4. Generate different waveforms Sine, Square, Triangular, and Rampetc. using DAC interface to 8051; change the frequency and Amplitude.

EQUIPMENT REQUIRED FOR LABORATORY

1. MASM/TASM software Kits 2. 8086 Microprocessor

- 1. 8051 Micro Controller kits
- Interfaces/peripheral subsystems

 8259 PIC
 - ii) 8279-KB/Display
 - iii) 8255 PPI
 - iv) 8251 USART
- 5. A/D and D/AC Interface

III Year - II SEMESTER

T P C 0 3 2

DIGITAL COMMUNICATIONS LAB

- 1. Time division multiplexing.
- 2. Pulse code modulation.
- 3. Differential pulse code modulation.
- 4. Delta modulation.
- 5. Frequency shift keying.
- 6. Phase shift keying .
- 7. Differential phase shift keying.
- 8. Companding
- 9. Source Encoder and Decoder
- 10. Linear Block Code-Encoder and Decoder
- 11. Binary Cyclic Code Encoder and Decoder
- 12. Convolution Code Encoder and Decoder

Equipment required for Laboratories:

- 1. RPS 0 30 V
- 2. CRO 0 20 M Hz.
- 3. Function Generators 0 1 M Hz
- 4. RF Generators 0 1000 M Hz./0 100 M Hz.
- 5. Multimeters
- 6. Lab Experimental kits for Digital Communication
- 7. Components
- 8. Radio Receiver/TV Receiver Demo kits or Trainees.

III Year – II SEMESTER

DIGITAL SIGNAL PROCESSING LAB

LIST OF EXPERIMENTS:

- 1. To study the architecture of DSP chips TMS 320C 5X/6X Instructions.
- 2. To verify linear convolution.
- 3. To verify the circular convolution.
- 4. To design FIR filter (LP/HP) using windowing technique
 - a) Using rectangular window
 - b) Using triangular window
 - c) Using Kaiser window
- 5. To Implement IIR filter (LP/HP) on DSP Processors
- 6. N-point FFT algorithm.
- 7. MATLAB program to generate sum of sinusoidal signals.
- 8. MATLAB program to find frequency response of analog LP/HP filters.
- 9. To compute power density spectrum of a sequence.
- 10. To find the FFT of given 1-D signal and plot.

III Year – II SEMESTER

Г	Р	С
0	2	1

Seminar

T P C 0 3 2

IV Year – I SEMESTER

T P C 3+1 0 3

VLSI DESIGN

OBJECTIVES

The student will be introduced to

- Use mathematical methods and circuit analysis models in analysis of CMOS digital electronics circuits, including logic components and their interconnects.
- Learn the various fabrication steps of IC and come across basic electrical properties of MOSFET.
- Apply CMOS technology-specific layout rules in the placement and routing of transistors and interconnect and to verify the functionality, timing, power and parasitic effects.
- The concepts and techniques of modern integrated circuit design and testing (CMOS VLSI).
- Design static CMOS combinational and sequential logic at the transistor level, including mask layout.

Unit-I:

Introduction : Introduction to IC Technology, MOS and related VLSI Technology, Basic MOS Transistors, Enhancement and Depletion modes of transistor action, IC production process, MOS and CMOS Fabrication processes, BiCMOS Technology, Comparison between CMOS and Bipolar technologies.

Basic Electrical Properties Of MOS and Bi-CMOS Circuits: I_{ds} versus V_{ds} Relationships, Aspects of MOS transistor Threshold Voltage, MOS transistor Trans, Output Conductance and Figure of Merit. The Pass transistor, NMOS Inverter, Pull-up to Pull-down Ratio for NMOS inverter driven by another NMOS inverter. Alternative forms of pull-up, The CMOS Inverter, MOS transistor circuit model, Bi-CMOS Inverter, Latch-up in CMOS circuits and BiCMOS Latch-up Susceptibility.

Unit-II:

MOS and Bi-CMOS Circuit Design Processes: MOS Layers, Stick Diagrams, Design Rules and Layout, General observations on the Design

rules, $2\mu m$ Double Metal, Double Poly, CMOS/BiCMOS rules, $1.2\mu m$ Double Metal, Double Poly CMOS rules, Layout Diagrams of NAND and NOR gates and CMOS inverter, Symbolic Diagrams-Translation to Mask Form.

Unit-III:

Basic Circuit Concepts: Sheet Resistance, Sheet Resistance concept applied to MOS transistors and Inverters, Area Capacitance of Layers, Standard unit of capacitance, The Delay Unit, Inverter Delays, Propagation Delays, Wiring Capacitances, Fan-in and fan-out characteristics, Choice of layers, Transistor switches, Realization of gates using NMOS, PMOS and CMOS technologies.

Scaling Of MOS Circuits: Scaling models, Scaling factors for device parameters, Limits due to sub threshold currents, current density limits on logic levels and supply voltage due to noise.

Unit-IV:

Subsystem Design: Architectural issues, switch logic, Gate logic, examples of structured design, clocked sequential circuits, system considerations, general considerations of subsystem design processes, an illustration of design processes.

Unit-V:

VISI Design Issues: VLSI Design issues and design trends, design process, design for testability, technology options, power calculations, package selection, clock mechanisms, mixed signal design, ASIC design flow, FPGA design flow, introduction to SoC design.

Unit-VI:

FPGA Design: Basic FPGA architecture, , FPGA configuration, configuration modes, FPGA design process- FPGA design flow, FPGA families, FPGA design examples-stack, queue and shift register implementation using VHDL, step-by-step approach of FPGA design process on Xilinx environment.

Text Books:

- 1. Essentials of VLSI Circuits and Systems By Kamran Eshraghian, Douglas and A. Pucknell and Sholeh Eshraghian, Prentice-Hall of India Private Limited,2005 Edition.
- 2. VLSI Design-Black Book By Dr. K.V.K.K. Prasad, Kattula Shyamala, Kogent Learning Solutions Inc.2012 Edition.

References:

- 1. VLSI Design By A.Albert Raj & T.Latha, PHI Learning Private Limited, 2010.
- 2. VLSI Design-A.Shanthi and A.Kavita, New Age International Private Limited, 2006 First Edition.

OUTCOMES

After going through this course the student will be able to

- Apply the Concept of design rules during the layout of a circuit.
- Model and simulate digital VLSI systems using hardware design language.
- Synthesize digital VLSI systems from register-transfer or higher level descriptions
- Understand current trends in semiconductor technology, and how it impacts scaling and performance.

IV Year – I SEMESTER

T P C 3+1 0 3

COMPUTER NETWORKS

Objectives

The aim of this course is to introduce key concepts and principles of computer networks. The course will use a top-down approach to study the Internet and its protocol stack. Architecture, protocol, application-examples will include email, web and media-streaming. We will cover communications services (e.g., TCP/IP) required to support such network applications. The implementation and deployment of communications services in practical networks: including wired and wireless LAN environments, will be followed by a discussion of issues of network-security and network-management. Internet's architecture and protocols will be used as the primary examples to illustrate the fundamental principles of computer networking.

UNIT I INTRODUCTION

OSI, TCP/IP and other networks models, Examples of Networks: Novell Networks, Arpanet, Internet, Network Topologies WAN, LAN, MAN.

UNIT II PHYSICAL LAYER

Transmission media copper, twisted pair wireless, switching and encoding asynchronous communications; Narrow band, broad band ISDN and ATM.

UNIT III DATA LINK LAYER

Design issues, framing, error detection and correction, CRC, Elementary Protocol-stop and wait, Sliding Window. Medium Access Sub Layer: ALOHA, MAC addresses, Carrier sense multiple access, IEEE 802.X Standard Ethernet, wireless LANS, Bridges.

UNIT IV

NETWORK LAYER

Virtual circuit and Datagram subnets-Routing algorithm shortest path routing, Flooding, Hierarchical routing, Broad cast, Multi cast, distance vector routing. **DYNAMIC ROUTING:** Broadcast routing. Rotary for mobility, Congestion, Control Algorithms – General Principles of Congestion prevention policies. Internetworking: The Network layer in the internet and in the ATM Networks.

UNIT V TRANSPORT LAYER

Transport Services, Connection management, TCP and UDP protocols; ATM AAL Layer Protocol.

UNIT VI APPLICATION LAYER

Network Security, Domain name system, SNMP, Electronic Mail; the World WEB, Multi Media.

TEXT BOOKS

- 1. Computer Networks Andrew S Tanenbaum, 4th Edition. Pearson Education/PHI.
- 2. Data Communications and Networking Behrouz A. Forouzan. Third Edition TMH.

REFERENCES

- 1. An Engineering Approach to Computer Networks-S.Keshav, 2nd Edition, Pearson Education.
- 2. Understanding communications and Networks, 3rd Edition, W.A. Shay, Thomson.

Outcomes:

The student will be able to

Analyze a communication system by separating out the different functions provided by the network; and some example networks.

Understand various network topologies required for communication

Understand that there are fundamental limits to any communications system;

Understand the general principles behind addressing, routing, reliable transmission and other stateful protocols as well as specific examples of each;

Have an informed view of both the internal workings of the Internet and of a number of common Internet applications and protocols.

IV Year – I SEMESTER

T P C 3+1 0 3

DIGITAL IMAGE PROCESSING

OBJECTIVES

The student will

- Learn the fundamental concepts and applications of Digital Image Processing.
- Learn the concepts of and how to perform Intensity transformations and spatial filtering.
- Understand the relationship between Filtering in spatial and frequency domains,
- Understand the concepts of and how to perform Image restoration and reconstruction.
- Understand the concepts of different color models and Color image processing.
- Learn the concepts of Wavelets and multi-resolution processing, Image compression and Watermarking, Morphological image processing, Image segmentation, Representation and description.

UNIT-1

Introduction: Origins of digital image processing, uses digital image processing, fundamental steps in digital image processing, components of an image processing system, digital image fundamentals, Elements of visual perception, light and electromagnetic spectrum, imaging sensing and acquisition, image sampling and quantization. Some basic relationships between pixels, an introduction to the mathematical tools used in digital image processing.

Image Transforms: Need for image transforms, Spatial Frequencies in image processing, introduction to Fourier transform, discrete Fourier transform, fast Fourier transform and its algorithm, properties of Fourier transform. Discrete sine transforms. Walsh Transform. Hadamard transform, Haar Transform. Slant transforms, SVD and KL Transforms or Hotelling Transform

UNIT-2

Intensity Transformations and Spatial Filtering: Background, Some basic intensity transformation functions, histogram processing, fundamentals of

spatial filtering, smoothing spatial filters, sharpening spatial filters, Combining spatial enhancement methods, using fuzzy techniques for intensity transformations and spatial filtering.

Filtering in the frequency domain: Preliminary concepts, Sampling and the Fourier transform of sampled functions, the discrete Fourier transform (DFT) of one variable, Extension to functions of two variables, some properties of the 2-D Discrete Fourier transform. The Basic of filtering in the frequency domain, image smoothing using frequency domain filters, Selective filtering, Implementation.

UNIT-3

Image restoration and Reconstruction: A model of the image degradation / Restoration process, Noise models, restoration in the presence of noise only-Spatial Filtering, Periodic Noise Reduction by frequency domain filtering, Linear, Position –Invariant Degradations, Estimation the degradation function, Inverse filtering, Minimum mean square error(Wiener) filtering ,constrained least squares filtering ,geometric mean filtering ,image reconstruction from projections.

Unit-4

Color image processing: color fundamentals, color models, pseudo color image processing, basic of full color image processing, color transformations, smoothing and sharpening. Image segmentation based on color, noise in color images, color image compression.

Unit-5

Wavelets and Multi-resolution Processing: image pyramids, sub band coding & Haar transforms multi resolution expressions, wavelet transforms in one dimensions. The fast wavelets transform, wavelet transforms in two dimensions, wavelet packets.

Image compression: Fundamentals, various compression methods-coding techniques, digital image water marking.

Unit-6

Morphological image processing: preliminaries Erosion and dilation, opening and closing, the Hit-or-miss transformation, some Basic Morphological algorithms, grey –scale morphology

Image segmentation: Fundamentals, point, line, edge detection thresholding, region –based segmentation, segmentation using Morphological watersheds, the use of motion in segmentation.

TEXT BOOKS :

- 1. R. C. Gonzalez and R. E. Woods, Digital Image Processing, 3rd edition, Prentice Hall, 2008.
- 2. R. C. Gonzalez, R. E. Woods and Steven L. Eddins , Digital Image Processing Using MATLAB , 2rd edition, Prentice Hall, 2009.
- Anil K.Jain, "Fundamentals of Digital Image Processing", Prentice Hall of India, 9th Edition, Indian Reprint, 2002.
 Jayaraman, S. Esakkirajan, and T. Veerakumar, Digital Image Processing, Tata McGraw-Hill Education, 2011.

OUTCOMES

After going through this course the student will be able to

- Perform different transforms on image useful for image processing applications
- Perform spatial and frequency domain filtering on image and can implement all smoothing and sharpening operations on images
- Perform image restoration operations/techniques on images
- Operate effectively on color images and different color conversions on images and can code images to achieve good compression
- Do wavelet based image processing and image compression using wavelets
- Perform all morphological operations on images and can be able to do image segmentation also.
- Develop simple algorithms for image processing and use the various techniques involved in Bio Medical applications, etc.

IV Year – I SEMESTER

T P C 3+1 0 3

COMPUTER ARCHITECTURE AND ORGANIZATION

Objectives

The student will

- Understand the fundamentals of different instruction set architectures and their relationship to the CPU design.
- Understand the principles and the implementation of computer arithmetic and ALU.
- Understand the memory system, I/O organization
- Understand the operation of modern CPUs including interfacing, pipelining, memory systems and busses.
- Understand the principles of operation of multiprocessor systems.

UNIT-I

BASIC STRUCTURE OF COMPUTERS: Computer Types, Functional units, Basic operational concepts, Bus structures, Software, Performance, multiprocessors and multi computers. Data types, Complements, Data Representation. Fixed Point Representation. Floating – Point Representation. Error Detection codes.

COMPUTER ARITHMETIC: Addition and subtraction, multiplication Algorithms, Division Algorithms, Floating point Arithmetic operations. Decimal Arithmetic unit, Decimal Arithmetic operations.

UNIT-II

REGISTER TRANSFER LANGUAGE AND MICRO-OPERATIONS: Register Transfer language. Register Transfer, Bus and memory transfer, Arithmetic Micro-operations, logic micro operations, shift micro-operations, Arithmetic logic shift unit. Instruction codes. Computer Registers Computer instructions –Instruction cycle. Memory Reference Instructions. Input Onput and Interrupt. **CENTRAL PROCESSING UNIT -** Stack organization. Instruction formats. Addressing modes. DATA Transfer and manipulation. Program control. Reduced Instruction set computer

UNIT-III

MICRO PROGRAMMED CONTROL: Control memory, Address sequencing, micro program example, Design of control unit-Hard wired control. Micro programmed control

UNIT-IV

THE MEMORY SYSTEM: Memory Hierarchy, Main memory, Auxiliary memory, Associative memory, Cache memory, Virtual memory, Memory management hardware

UNIT-V

INPUT-OUTPUT ORGANIZATION : Peripheral Devices, Input-Output Interface, Asynchronous data transfer Modes of Transfer, Priority Interrupt, Direct memory Access, Input –Output Processor (IOP), Serial communication;

UNIT-VI

PIPELINE AND VECTOR PROCESSING: Parallel Processing, Pipelining, Arithmetic Pipeline, Instruction Pipeline, RISC Pipeline Vector Processing, Array Processors. **Multi processors:** Characteristics of Multiprocessors, Interconnection Structures, Interprocessor Arbitration. Interprocessor Communication and Synchronization, Cache Coherence.

TEXT BOOKS:

- 1. Computer System Architecture M.Moris Mano, IIIrd Edition, PHI / Pearson, 2006.
- 2. Computer Organization Car Hamacher, ZvonksVranesic, SafwatZaky, V Edition, McGraw Hill, 2002.

REFERENCES:

- 1. Computer Organization and Architecture William Stallings Seventh Edition, PHI/Pearson, 2006.
- 2. Computer Architecture and Organization John P. Hayes, Mc Graw Hill International editions, 1998.

Objectives :

- Understand the fundamentals of different instruction set architectures and their relationship to the CPU design.
- Understand the principles and the implementation of computer arithmetic and ALU.
- Understand the memory system, I/O organization
- Understand the operation of modern CPUs including interfacing, pipelining, memory systems and busses.
- Understand the principles of operation of multiprocessor systems.
- Demonstrate the relationship between the software and the hardware and focuses on the foundational concepts that are the basis for current computer design.

IV Year – I SEMESTER

T P C 3+1 0 3

Elective I

ELECTRONIC SWITCHING SYSTEMS

Objectives :

The student will

- Understand the means of measuring traffic.
- Understand the implication of the traffic level on system design.

UNIT -I:

Introduction: Evolution of Telecommunications, Simple Telephone Communication, Basics of Switching System, Manual Switching System, Major Telecommunication Networks.

Crossbar Switching: Principles of Common Control, Touch Tone Dial Telephone, Principles of Crossbar Switching, Crossbar Switch Configurations, Cross point Technology, Crossbar Exchange Organization.

UNIT -II:

Electronic Space Division Switching: Stored Program Control, Centralized SPC, Distributed SPC, Software Architecture, Application Software, Enhanced Services, Two-Stage Networks, Three-Stage Networks, n- Stage Networks.

Time Division Switching: Basic Time Division Space Switching, Basic Time Division Time Switching, Time Multiplexed Space Switching, Time Multiplexed Time Switching, Combination Switching, Three-Stage Combination Switching, n- Stage Combination Switching.

UNIT -III:

Telephone Networks: Subscriber Loop System, Switching Hierarchy and Routing, Transmission Plan, Transmission Systems, Numbering Plan, Charging Plan, Signaling Techniques, In-channel Signaling, Common Channel Signaling, Cellular Mobile Telephony.

Signaling: Customer Line Signaling, Audio- Frequency Junctions and Trunk Circuits, FDM Carrier Systems, PCM Signaling, Inter- Register Signaling, Common- Channel Signaling Principles, CCITT Signaling System no.6, CCITT Signaling System no.7, Digital Customer Line Signaling.

UNIT -IV:

Packet Switching: Statistical Multiplexing, Local- Area and Wide- Area Networks, Large-scale Networks, Broadband Networks.

Telecommunications Traffic: The Unit of Traffic, Congestion, Traffic Measurement, A Mathematical Model, Lost-call Systems, Queuing Systems.

UNIT -V:

Switching Networks: Single- Stage Networks, Grading, Link Systems, Grades of service of link systems, Application of Graph Theory to link Systems, Use of Expansion, Call Packing,

Rearrange-able Networks, Strict- Sense non-blocking Networks, Sectionalized Switching Networks

UNIT -VI:

Integrated Services Digital Network: Motivation for ISDN, New Services, Network and Protocol Architecture, Transmission Channels, User- Network Interfaces, Signaling, Numbering and Addressing, Service Characterization, Interworking, ISDN Standards, Expert Systems in ISDN, Broadband ISDN, Voice Data Integration.

TEXT BOOKS:

- 1. Telecommunication Switching Systems and Networks- Thiagarajan Viswanathan, 2000, PHI.
- 2. Telecommunications Switching, Traffic and Networks- J. E. Flood, 2006, Pearson Education.

REFERENCES:

- 1. Digital Telephony- J. Bellamy, 2nd Edition, 2001, John Wiley.
- 2. Data Communications and Networks- Achyut S. Godbole, 2004, TMH.
- 3. Principles of Communication Ststems- H. Taub & D. Schilling, 2nd Edition, 2003, TMH.
- 4. Data Communication & Networking- B. A. Forouzan, 3rd Edition, 2004, TMH.
- 5. Telecommunication System Engineering Roger L. Freeman, 4th Ed., Wiley-Inter Science, John Wiley & Sons, 2004.

Outcomes

The student will be able to

- Evaluate the time and space parameters of a switched signal
- Establish the digital signal path in time and space, between two terminals
- Evaluate the inherent facilities within the system to test some of the SLIC, CODEC and digital switch functions.
- Investigate the traffic capacity of the system.
- Evaluate methods of collecting traffic data.
- Evaluate the method of interconnecting two separate digital switches.

ANALOG IC DESIGN (Elective I)

OBJECTIVES

The student will be introduced to

- The student will be able to understand the behavior of MOS Devices and Small-Signal & Large-Signal Modeling of MOS Transistor and Analog Sub-Circuits.
- In this course, students can study CMOS Amplifiers like Differential Amplifiers, Cascode Amplifiers, Output Amplifiers, and Operational Amplifiers.
- Another main object of this course is to motivate the graduate students to design and to develop the Analog CMOS Circuits for different Analog operations.
- The concepts of Open-Loop Comparators and Different Types of Oscillators like Ring Oscillator, LC Oscillator etc.

UNIT -I:

MOS Devices and Modeling: The MOS Transistor, Passive Components-Capacitor & Resistor, Integrated circuit Layout, CMOS Device Modeling -Simple MOS Large-Signal Model, Other Model Parameters, Small-Signal Model for the MOS Transistor, Computer Simulation Models, Sub-threshold MOS Model.

UNIT -II:

Analog CMOS Sub-Circuits: MOS Switch, MOS Diode, MOS Active Resistor, Current Sinks and Sources, Current Mirrors-Current mirror with Beta Helper, Degeneration, Cascode current Mirror and Wilson Current Mirror, Current and Voltage References, Band gap Reference.

UNIT -III:

CMOS Amplifiers: Inverters, Differential Amplifiers, Cascode Amplifiers, Current Amplifiers, Output Amplifiers, High Gain Amplifiers Architectures.

UNIT -IV:

CMOS Operational Amplifiers: Design of CMOS Op Amps, Compensation of Op Amps, Design of Two-Stage Op Amps, Power- Supply Rejection Ratio of Two-Stage Op Amps, Cascode Op Amps, Measurement Techniques of OP Amp.

147

UNIT -V:

Comparators: Characterization of Comparator, Two-Stage, Open-Loop Comparators, Other Open-Loop Comparators, Improving the Performance of Open-Loop Comparators, Discrete-Time Comparators.

UNIT -VI:

Oscillators & Phase-Locked Loops: General Considerations, Ring Oscillators, LC Oscillators, Voltage Controlled Oscillators.

Simple PLL, Charge Pump PLLs, Non-Ideal Effects in PLLs, Delay Locked Loops, Applications.

Text Books:

- 1. Design of Analog CMOS Integrated Circuits- Behzad Razavi, TMH Edition.
- CMOS Analog Circuit Design Philip E. Allen and Douglas R. Holberg, Oxford University Press, International Second Edition/Indian Edition, 2010.

References:

- Analysis and Design of Analog Integrated Circuits- Paul R. Gray, Paul J. Hurst, S. Lewis and R. G. Meyer, Wiley India, Fifth Edition, 2010.
- 2. Analog Integrated Circuit Design- David A.Johns, Ken Martin, Wiley Student Edn, 2013.

OUTCOMES

After going through this course the student will be able to

- Understand the concepts of MOS Devices and Modeling.
- Design and analyze any Analog Circuits in real time applications.
- Extend the Analog Circuit Design to Different Applications in Real Time.
- Understand of Open-Loop Comparators and Different Types of Oscillators.

148

OBJECT ORIENTED PROGRAMMING & OPERATING SYSTEM

(Elective I)

Course Objectives:

By the end of the course student will

- Describe the general architecture of computers
- Describe object oriented concepts
- Describe, contrast and compare differing structures for operating Systems
- Understand and analyze theory and implementation of: processes, resource control (concurrency etc.), physical and virtual memory, scheduling, I/O and files

UNIT-I:

Introduction to OOP

Introduction, Need of Object Oriented Programming, Principles of Object Oriented Languages, Procedural languages Vs OOP, Applications of OOP.

UNIT-II:

Computer System and Operating System Overview: Overview of computer operating systems, operating systems functions, protection and security, distributed systems, special purpose systems, operating systems structures and systems calls, operating systems generation.

UNIT-III:

Process Management – Process concept- process scheduling, operations, Inter process communication. Multi Thread programming models. Process scheduling criteria and algorithms, and their evaluation.

UNIT-IV:

Memory Management: Swapping, contiguous memory allocation, paging, structure of the page table, segmentation.

UNIT-V:

Virtual Memory Management:

virtual memory, demand paging, page-Replacement, algorithms, Allocation of Frames, Thrashing.

UNIT-VI:

File system Interface- the concept of a file, Access Methods, Directory structure, File system mounting, file sharing, protection.

TEXT BOOKS:

- 1. The Complete Reference Java, 8ed, Herbert Schildt, TMH.
- Operating System Concepts- Abraham Silberchatz, Peter B. Galvin, Greg Gagne 7th Edition, John Wiley.
- 3. Operating Systems' Internal and Design Principles Stallings, Sixth Edition–2005, Pearson education.

REFERENCES:

- 1. http://nptel.iitm.ac.in/courses/Webcourse-contents/IISc-BANG/ Operating%20Systems/New_index1.html.
- 2. Operating systems- A Concept based Approach-D.M.Dhamdhere, 2nd Edition, TMH.
- 3. Operating System A Design Approach-Crowley, TMH.
- 4. Modern Operating Systems, Andrew S Tanenbaum 3rd edition PHI.

Course Outcomes:

By the end of the course student will be able to

- describe the general architecture of computers
- describe object oriented concepts
- describe, contrast and compare differing structures for operating Systems.
- understand and analyze theory and implementation of: processes, resource control (concurrency etc.), physical and virtual memory, scheduling, I/O and files.

RADAR SYSTEMS (Elective-I)

OBJECTIVES

The student will be introduced to

- the knowledge of different Antennas systems and communication equipment required for the operation of RADAR.
- different parameters of Transmitter and Receiver of RADAR
- the concept of Doppler Effect to measure parameters of RADAR.
- different types of RADARS and applications based on the type of Transmitters, Receivers, and their functions.

Pre requisites: Antennas and wave propagation; Electromagnetics and Communications

UNIT – I

Introduction: Nature of Radar. Maximum Unambiguous Range. Radar Waveforms, Simple form of Radar Equation, Radar Block Diagram and Operation, Radar Frequencies and Applications. Related Problems. Radar Equation: Prediction of Range Performance, Minimum Detectable Signal, Receiver Noise and SNR, Integration of Radar Pulses, Radar Cross Section of Targets (simple targets-sphere, cone-sphere). Transmitter power.

UNIT – II

PRF and Range Ambiguities, System Losses (Qualitative treatment). Related Problems. CW and Frequency Modulated Radar: Doppler effect, CW Radar – Block Diagram, Isolation between Transmitter and Receiver, Non-zero IF Receiver, Receiver Bandwidth Requirement, Applications of CW radar. FM-CW Radar, Range and Doppler Measurement, Block Diagram and Characteristics (Approaching/ Receding Targets), FM-CW altimeter, Measurement Errors, Multiple Frequency CW Radar.

UNIT – III

MTI and Pulse Doppler Radar: Introduction, Principle, MTIR Radar with-Power Amplifier Transmitter and Power Oscillator Transmitter, Delay Line Cancellers – Filter Characteristics, Blind Speeds, Double Cancellation staggered PRFs. Range Gated Doppler Filters. MTI Radar Parameters, Limitations to MTI Performance. Non-coherent MTI, MTI versus Pulse Doppler Radar. Tracking Rader : Tracking with Rader, Sequential Lobing, Conical Scan, Mono-pulse Tracking.

UNIT – IV

Rader Amplitude Comparison Mono-pulse (one – and two –coordinates), Phase Comparison Mono-pulse. Target Reflection Characteristics and Angular Accuracy. Tracking in Range Acquisition and Scanning Patterns. Comparison of Trackers. Radar Antennas – Antenna Parameters, Reflector Antennas, Lens Antennas, Lens Antennas Cosecant- Squared Antenna Pattern, Radomes.

UNIT- V

Electronically Steered Phased Array Antennas, Phase Shifters, Frequency – scan Arrays, Radiation for Phased Array, Architecture for Phased Arrays. Detection of Radar Signals in Noise: Introduction, Matched Filter Receiver – Response Characteristics and Derivation, Correlation detection, Detection criteria, Detector Characteristics, Automatic Detection, Constant False Alarm Rate Receiver

UNIT – VI

Radar Receivers – Noise Figure and Noise Temperature. Displays – types. Duplexer – Branch type and Balanced type, Circulators as Duplexers. Introduction to Phased Array Antennas- Basic Concepts, Radiation Pattern. Beam Steering and Beam Width changes, Series versus Parallel Feeds. Applications, Advantages and Limitations.

TEXT BOOKS:

- 1. Introduction to Radar Systems Merrill I. Skolnik, SECOND EDITION, McGraw Hill, 1981.
- 2. Radar Engineering and fundamentals of Navigational Aids-G.S.N.Raju, I.K International, 2008.

REFERENCES:

- 1. Introduction to Radar Systems Merrill I. Skolnik, THIRD EDITION, Tata McGraw – Hill, 2001.
- 2. Radar: Principles, Technologies, Applications- Byron Edde, Pearson Education.

OUTCOMES

After going through this course the student will be able to

- Acquire the knowledge to apply and to design required parameters for a RADAR system.
- Apply the techniques learned, to choose suitable RADAR from the available, for the required application.

ADVANCED COMPUTER ARCHITECTURE (Elective I)

UNIT -I:

Fundamentals of Computer Design:

Fundamentals of Computer design, Changing faces of computing and task of computer designer, Technology trends, Cost price and their trends, Measuring and reporting performance, Quantitative principles of computer design, Amdahl's law.

Instruction set principles and examples- Introduction, Classifying instruction set- MEmory addressing- type and size of operands, Operations in the instruction set.

UNIT –II:

Pipelines:

Introduction, Basic RISC instruction set, Simple implementation of RISC instruction set, Classic five stage pipe lined RISC processor, Basic performance issues in pipelining, Pipeline hazards, Reducing pipeline branch penalties.

Memory Hierarchy Design:

Introduction, Review of ABC of cache, Cache performance, Reducing cache miss penalty, Virtual memory.

UNIT -III:

Instruction Level Parallelism the Hardware Approach:

Instruction-Level parallelism, Dynamic scheduling, Dynamic scheduling using Tomasulo's approach, Branch prediction, high performance instruction delivery- hardware based speculation.

UNIT-IV

ILP Software Approach

Basic compiler level techniques, Static branch prediction, VLIW approach, Exploiting ILP, Parallelism at compile time, Cross cutting issues -Hardware verses Software.

UNIT –V:

Multi Processors and Thread Level Parallelism:

Multi Processors and Thread level Parallelism- Introduction, Characteristics of application domain, Systematic shared memory architecture, Distributed shared – memory architecture, Synchronization.

UNIT –VI:

Inter Connection and Networks:

Introduction, Interconnection network media, Practical issues in interconnecting networks, Examples of inter connection, Cluster, Designing of clusters.

Intel Architecture: Intel IA-64 ILP in embedded and mobile markets Fallacies and pit falls.

TEXT BOOKS:

1. John L. Hennessy, David A. Patterson - Computer Architecture: A Quantitative Approach, 3rd Edition, An Imprint of Elsevier.

REFERENCES:

- 1. John P. Shen and Miikko H. Lipasti Modern Processor Design : Fundamentals of Super Scalar Processors
- 2. Computer Architecture and Parallel Processing Kai Hwang, Faye A.Brigs., MC Graw Hill.
- 3. Advanced Computer Architecture A Design Space Approach Dezso Sima, Terence Fountain, Peter Kacsuk , Pearson Ed.

IV Year – I SEMESTER

Т	Р	С
3+1	0	3

Elective II

OPTICAL COMMUNICATIONS

OBJECTIVES

The student will be introduced to

- the functionality of each of the components that comprise a fiberoptic communication system
- the properties of optical fiber that affect the performance of a communication link and types of fiber materials with their properties and the losses occur in fibers.
- the principles of single and multi-mode optical fibers and their characteristics
- working of semiconductor lasers, and differentiate between direct modulation and external electro-optic modulation.
- Analyze the operation of LEDs, laser diodes, and PIN photo detectors (spectral properties, bandwidth, and circuits) and apply in optical systems.
- Analyze and design optical communication and fiber optic sensor systems.
- the models of analog and digital receivers.

UNIT I

Overview of optical fiber communication - Historical development, The general system, advantages of optical fiber communications. Optical fiber wave guides- Introduction, Ray theory transmission, Total Internal Reflection, Acceptance angle, Numerical Aperture, Skew rays, Cylindrical fibers- Modes, V-number, Mode coupling, Step Index fibers, Graded Index fibers, Single mode fibers- Cut off wavelength, Mode Field Diameter, Effective Refractive Index, Related problems.

UNIT II

Fiber materials:- Glass, Halide, Active glass, Chalgenide glass, Plastic optical fibers. Signal distortion in optical fibers-Attenuation, Absorption, Scattering and Bending losses, Core and Cladding losses, Information capacity

determination, Group delay, Types of Dispersion:- Material dispersion, Wave-guide dispersion, Polarization-Mode dispersion, Intermodal dispersion, Pulse broadening in Graded index fiber, Related problems.

UNIT III

Optical fiber Connectors-Connector types, Single mode fiber connectors, Connector return loss, Fiber Splicing- Splicing techniques, Splicing single mode fibers, Fiber alignment and joint loss- Multimode fiber joints, single mode fiber joints.

UNIT IV

Optical sources- LEDs, Structures, Materials, Quantum efficiency, Power, Modulation, Power bandwidth product. Injection Laser Diodes- Modes, Threshold conditions, External quantum efficiency, Laser diode rate equations, Resonant frequencies, Reliability of LED&ILD, Optical detectors-Physical principles of PIN and APD, Detector response time, Temperature effect on Avalanche gain, Comparison of Photo detectors, Related problems.

UNIT V

Source to fiber power launching - Output patterns, Power coupling, Power launching, Equilibrium Numerical Aperture, Laser diode to fiber coupling, Optical receiver operation- Fundamental receiver operation, Digital signal transmission, error sources, Receiver configuration, Digital receiver performance, Probability of Error, Quantum limit, Analog receivers.

UNIT VI

Optical system design - Point-to- point links- Component choice and considerations, Link power budget, Rise time budget with examples, Line coding in Optical links, WDM, Necessity, Principles, Measurement of Attenuation and Dispersion, Eye pattern.

TEXT BOOKS :

- 1. Optical Fiber Communications Gerd Keiser, Mc Graw-Hill International edition, 3rd Edition, 2000.
- 2. Optical Fiber Communications John M. Senior, PHI, 2nd Edition, 2002.

RERFERENCES :

- 1. Fiber Optic Communications D.K. Mynbaev , S.C. Gupta and Lowell L. Scheiner, Pearson Education,2005.
- 2. Text Book on Optical Fiber Communication and its Applications S.C.Gupta, PHI, 2005.

- 3. Fiber Optic Communication Systems Govind P. Agarwal, John Wiley, 3rd Ediition, 2004.
- 4. Fiber Optic Communications Joseph C. Palais, 4th Edition, Pearson Education, 2004.

OUTCOMES

After going through this course the student will be able to

- Choose necessary components required in modern optical communications systems.
- Design and build optical fiber experiments in the laboratory, and learn how to calculate electromagnetic modes in waveguides, the amount of light lost going through an optical system, dispersion of optical fibers.
- Use different types of photo detectors and optical test equipment to analyze optical fiber and light wave systems.
- Choose the optical cables for better communication with minimum losses
- Design, build, and demonstrate optical fiber experiments in the laboratory.

DIGITAL IC DESIGN (Elective II)

OBJECTIVES

- The student will be able to understand the MOS Design.
- In this course, students can study Combinational MOS Logic Circuits and Sequential MOS Logic Circuits.
- Another main object of this course is to motivate the graduate students to design and to develop the Digital Integreated Circuits for different Applications.
- The concepts of Semiconductor Memories, Flash Memory, RAM array organization.

UNIT-I:

MOS Design: Pseudo NMOS Logic – Inverter, Inverter threshold voltage, Output high voltage, Output Low voltage, Gain at gate threshold voltage, Transient response, Rise time, Fall time, Pseudo NMOS logic gates, Transistor equivalency, CMOS Inverter logic.

UNIT-II:

Combinational MOS Logic Circuits: MOS logic circuits with NMOS loads, Primitive CMOS logic gates – NOR & NAND gate, Complex Logic circuits design – Realizing Boolean expressions using NMOS gates and CMOS gates, AOI and OIA gates, CMOS full adder, CMOS transmission gates, Designing with Transmission gates.

UNIT-III:

Sequential MOS Logic Circuits: Behaviour of bistable elements, SR Latch, Clocked latch and flip flop circuits, CMOS D latch and edge triggered flip-flop.

UNIT-IV:

Dynamic Logic Circuits: Basic principle, Voltage Bootstrapping, Synchronous dynamic pass transistor circuits, Dynamic CMOS transmission gate logic, High performance Dynamic CMOS circuits.

UNIT-V:

Interconnect: Capacitive Parasitics, Resistive Parasitics, Inductive Parasitics, Advanced Interconnect Techniques.

UNIT-VI:

Semiconductor Memories: Memory Types, RAM array organization, DRAM – Types, Operation, Leakage currents in DRAM cell and refresh operation, SRAM operation Leakage currents in SRAM cells, Flash Memory-NOR flash and NAND flash.

Text Books:

- 1. Digital Integrated Circuits A Design Perspective, Jan M. Rabaey, Anantha Chandrakasan, Borivoje Nikolic, 2nd Ed., PHI.
- 2. Digital Integrated Circuit Design Ken Martin, Oxford University Press, 2011.

References:

- CMOS Digital Integrated Circuits Analysis and Design Sung-Mo Kang, Yusuf Leblebici, TMH, 3rd Ed., 2011.
- CMOS VLSI Design Neil H.E Weste, David harris, Ayan Banerjee 3rd Edition, Pearson

OUTCOMES

After going through this course the student will be able to

- Understand the concepts of MOS Design.
- Design and analysis of Combinational and Sequential MOS Circuits.
- Extend the Digital IC Design to Different Applications.
- Understand the Concepts of Semiconductor Memories, Flash Memory, RAM array organization.

SPEECH PROCESSING

(ELECTIVE – II)

UNIT –I:

Fundamentals of Digital Speech Processing:

Anatomy & Physiology of Speech Organs, The process of Speech Production, Acoustic Phonetics, Articulatory Phonetics, The Acoustic Theory of Speech Production- Uniform lossless tube model, effect of losses in vocal tract, effect of radiation at lips, Digital models for speech signals.

UNIT –II:

Time Domain Models for Speech Processing:

Introduction- Window considerations, Short time energy and average magnitude Short time average zero crossing rate, Speech Vs Silence discrimination using energy and zero crossing, Pitch period estimation using a parallel processing approach, The short time autocorrelation function, The short time average magnitude difference function, Pitch period estimation using the autocorrelation function.

UNIT –III:

Linear Predictive Coding (LPC) Analysis:

Basic principles of Linear Predictive Analysis: The Autocorrelation Method, The Covariance Method, Solution of LPC Equations: Cholesky Decomposition Solution for Covariance Method, Durbin's Recursive Solution for the Autocorrelation Equations, Comparison between the Methods of Solution of the LPC Analysis Equations, Applications of LPC Parameters: Pitch Detection using LPC Parameters, Formant Analysis using LPC Parameters.

UNIT –IV:

Homomorphic Speech Processing:

Introduction, Homomorphic Systems for Convolution: Properties of the Complex Cepstrum, Computational Considerations, The Complex Cepstrum of Speech, Pitch Detection, Formant Estimation, The Homomorphic Vocoder.

UNIT-V

Speech Enhancement:

Nature of interfering sounds, Speech enhancement techniques: Single

Microphone Approach : spectral subtraction, Enhancement by re-synthesis, Comb filter, Wiener filter, Multi microphone Approach.

UNIT-VI:

Automatic Speech & Speaker Recognition:

Basic pattern recognition approaches, Parametric representation of speech, Evaluating the similarity of speech patterns, Isolated digit Recognition System, Continuous digit Recognition System.

Hidden Markov Model (HMM) for Speech:

Hidden Markov Model (HMM) for speech recognition, Viterbi algorithm, Training and testing using HMMS,

Speaker Recognition:

Recognition techniques, Features that distinguish speakers, Speaker Recognition Systems: Speaker Verification System, Speaker Identification System.

TEXT BOOKS:

- 1. Digital Processing of Speech Signals L.R. Rabiner and S. W. Schafer. Pearson Education.
- Speech Communications: Human & Machine Douglas O'Shaughnessy, 2nd Ed., Wiley India, 2000.
- 3. Digital Processing of Speech Signals. L.R Rabinar and R W Jhaung, 1978, Pearson Education.

REFERENCE BOOKS:

- 1. Discrete Time Speech Signal Processing: Principles and Practice Thomas F. Quateri, 1st Ed., PE.
- Speech & Audio Signal Processing- Ben Gold & Nelson Morgan, 1st Ed., Wiley.

Artificial Neural Networks and Fuzzy Logic

(Elective II)

1. Introduction to Neural Networks

Introduction, Humans and Computers, Organization of the Brain, Biological Neuron, Biological and Artificial Neuron Models, Hodgkin-Huxley Neuron Model, Integrate-and-Fire Neuron Model, Spiking Neuron Model, Characteristics of ANN, McCulloch-Pitts Model, Potential Applications of ANN.

Essentials of Artificial Neural Networks

Artificial Neuron Model, Operations of Artificial Neuron, Types of Neuron Activation Function, ANN Architectures, Classification Taxonomy of ANN-Connectivity, Neural Dynamics (Activation and Synaptic), Learning Strategy (Supervised, Unsupervised, Reinforcement), Learning Rules, Types of Application.

2. Feed Forward Neural Networks

Introduction, Perceptron Models: Discrete, Continuous and Multi-Category, Training

Algorithms: Discrete and Continuous Perceptron Networks, Perceptron Convergence

theorem, Limitations of the Perceptron Model, Applications.

Multilayer Feed Forward Neural Networks

Credit Assignment Problem, Generalized Delta Rule, Derivation of Backpropagation (BP)

Training, Summary of Back-propagation Algorithm, Kolmogorov Theorem, Learning

Difficulties and Improvements.

3. Associative Memories

Paradigms of Associative Memory, Pattern Mathematics, Hebbian Learning, General Concepts of Associative Memory Associative Matrix, Association Rules, Hamming Distance, The Linear Associator, Matrix Memories, Content Addressable Memory, Bidirectional Associative Memory (BAM) Architecture, BAM Training Algorithms: Storage and Recall Algorithm,

BAM Energy Function, Proof of BAM Stability Theorem. Architecture of Hopfield Network: Discrete and Continuous versions, Storage and Recall Algorithm, Stability Analysis, Capacity of the Hopfield Network.

4. Self-Organizing Maps (SOM) and Adaptive Resonance Theory (ART)

Introduction, Competitive Learning, Vector Quantization, Self-Organized Learning Networks, Kohonen Networks, Training Algorithms, Linear Vector Quantization, Stability- Plasticity Dilemma, Feed forward competition, Feedback Competition, Instar, Outstar, ART1, ART2, Applications.

5. Classical & Fuzzy Sets

Introduction to classical sets – properties, Operations and relations; Fuzzy sets, Membership, Uncertainty, Operations, Properties, fuzzy relations, cardinalities, membership functions.

6. Fuzzy Logic System Components

Fuzzification, Membership Value assignment, development of rule base and decision making system, Defuzzification to crisp sets, Defuzzification methods.

Applications :

Neural network applications: Process identification, Fraction Approximation, Control and Process Monitoring, Fault diagnosis and Load forecasting.

Fuzzy logic applications: Fuzzy logic control and Fuzzy classification.

Text Books:

- 1. Neural Netwroks, Fuzy logic, Gnenetic algorithms: synthesis and applications by Rajasekharan and Rai- PHI Publication.
- 2. Introduction to Artificial Neural Systems- Jacek M.Zurada, Jaico Publishing House, 1997.

Reference Books:

- 1. Neural and Fuzzy Systems: Foundation, Architectures and Applications, N. Yadaiah and S. Bapi Raju, Pearson Education
- 2. Neural Networks James A Freeman and Davis Skapura, Pearson, 2002
- 3. Neural Netwroks Simon Hykins, Pearson Education.
- Neural Engineering by C. Eliasmith and CH. Anderson, PHI. Neural Netwroks and Fuzzy Logic System by Brok Kosko, PHI Publications.

NETWORK SECURITY & CRYPTOGRAPHY (Elective-II)

Course objectives:

The main objective of this course is to teach students to understand and how to address various software security problems in a secure and controlled environment. During this course the students will gain knowledge (both theoretical and practical) in various kinds of software security problems, and techniques that could be used to protect the software from security threats. The students will also learn to understand the "modus operandi" of adversaries; which could be used for increasing software dependability.

Course outcomes:

- 1. be able to individually reason about software security problems and protection techniques on both an abstract and a more technically advanced level.
- 2. be able to individually explain how software exploitation techniques, used by adversaries, function and how to protect against them.

Syllabus:

UNIT I : Classical Encryption Techniques

Objectives: The Objectives of this unit is to present an overview of the main concepts of cryptography, understand the threats & attacks, understand ethical hacking.

Introduction: Security attacks, services & mechanisms, Symmetric Cipher Model, Substitution Techniques, Transportation Techniques, Cyber threats and their defense (Phishing Defensive measures, web based attacks, SQL injection & Defense techniques) TEXT BOOK 2), Buffer overflow & format string vulnerabilities, TCP session hijacking (ARP attacks, route table modification) UDP hijacking (man-in-the-middle attacks) (TEXT BOOK3).

UNIT II: Block Ciphers & Symmetric Key Cryptography

Objectives: The Objectives of this unit is to understand the difference between stream ciphers & block ciphers, present an overview of the Feistel Cipher and explain the encryption and decryption, present an overview of DES, Triple DES, Blowfish, IDEA.

Traditional Block Cipher Structure, DES, Block Cipher Design Principles,

AES-Structure, Transformation functions, Key Expansion, Blowfish, CAST-128, IDEA, Block Cipher Modes of Operations.

UNIT III: Number Theory & Asymmetric Key Cryptography

Objectives: *Presents the basic principles of public key cryptography, Distinct uses of public key cryptosystems.*

Number Theory: Prime and Relatively Prime Numbers, Modular Arithmetic, Fermat's and Euler's Theorems, The Chinese Remainder theorem, Discrete logarithms.

Public Key Cryptography: Principles, public key cryptography algorithms, RSA Algorithms, Diffie Hellman Key Exchange, Elgamal encryption & decryption, Elliptic Curve Cryptography.

UNIT IV : Cryptographic Hash Functions & Digital Signatures

Objectives: Present overview of the basic structure of cryptographic functions, Message Authentication Codes, Understand the operation of SHA-512, HMAC, Digital Signature

Application of Cryptographic hash Functions, Requirements & Security, Secure Hash Algorithm, Message Authentication Functions, Requirements & Security, HMAC & CMAC. Digital Signatures, NIST Digital Signature Algorithm. Key management & distribution.

UNIT V: User Authentication, Transport Layer Security & Email Security

Objectives: Present an overview of techniques for remote user authentication, Kerberos, Summarize Web Security threats and Web traffic security approaches, overview of SSL & TLS. Present an overview of electronic mail security.

User Authentication: Remote user authentication principles, Kerberos **Transport Level Security:** Web Security Requirements, Secure Socket Layer (SSL) and Transport Layer Security (TLS), Secure Shell(SSH) **Electronic Mail Security:** Pretty Good Privacy (PGP) and S/MIME.

UNIT VI: IP Security & Intrusion Detection Systems

Objectives: Provide an overview of IP Security, concept of security association, Intrusion Detection Techniques

IP Security: IP Security Overview, IP Security Architecture, Authentication Header, Encapsulating Security Payload, Combining Security Associations and Key Management.

Intrusion detection: Overview, Approaches for IDS/IPS, Signature based IDS, Host based IDS/IPS. (TEXT BOOK 2)

TEXT BOOKS:

- 1. Cryptography & Network Security: Principles and Practices, William Stallings, PEA, Sixth edition.
- 2. Introduction to Computer Networks & Cyber Security, Chwan Hwa Wu, J.David Irwin, CRC press.
- 3. Hack Proofing your Network, Russell, Kaminsky, Forest Puppy, Wiley Dreamtech.

REFERENCE BOOKS:

- 1. Everyday Cryptography, Fundamental Principles & Applications, Keith Martin, Oxford.
- 2. Network Security & Cryptography, Bernard Menezes, Cengage, 2010.

IV Year – I SEMESTER	AND I SEMESTED	Т	Р	С
	ear – I SEMESTER	0	3	2

VLSI Laboratory

The students are required to design the schematic diagrams using CMOS logic and to draw the layout diagrams to perform the following experiments using CMOS 130nm Technology with necessary EDA tools (Mentor Graphics/Tanner).

List of Experiments:

- 1. Design and implementation of an inverter
- 2. Design and implementation of universal gates
- 3. Design and implementation of full adder
- 4. Design and implementation of full subtractor
- 5. Design and implementation of RS-latch
- 6. Design and implementation of D-latch
- 7. Design and implementation asynchronous counter
- 8. Design and Implementation of static RAM cell
- 9. Design and Implementation of differential amplifier
- 10. Design and Implementation of ring oscillator

Equipment Required:

- 1. Mentor Graphics/Tanner software-latest version
- 2. Personal computer with necessary peripherals.

IV Year – I SEMESTER

MICROWAVE ENGINEERING LAB

Minimum Twelve Experiments to be conducted:

Part – A (Any 7 Experiments) :

- 1. Reflex Klystron Characteristics.
- 2. Gunn Diode Characteristics.
- 3. Attenuation Measurement.
- 4. Directional Coupler Characteristics.
- 5. VSWR Measurement.
- 6. Impedance and Frequency Measurement.
- 7. Waveguide parameters measurement.
- 8. Scattering parameters of Circulator.
- 9. Scattering parameters of Magic Tee.

Part – B (Any 5 Experiments) :

- 10. Characterization of LED.
- 11. Characterization of Laser Diode.
- 12. Intensity modulation of Laser output through an optical fiber.
- 13. Measurement of Data rate for Digital Optical link.
- 14. Measurement of NA.
- 15. Measurement of losses for Analog Optical link.

Equipment required for Laboratories:

- 1. Regulated Klystron Power Supply
- 2. VSWR Meter -
- 3. Micro Ammeter $0 500 \mu A$
- 4. Multi meter
- 5. CRO
- 6. GUNN Power Supply, Pin Modulator
- 7. Reflex Klystron

T P C 0 3 2

- 8. Crystal Diodes
- 9. Micro wave components (Attenuation)
- 10. Frequency Meter
- 11. Slotted line carriage
- 12. Probe detector
- 13. wave guide shorts
- 14. Pyramidal Horn Antennas
- 15. Directional Coupler
- 16. E, H, Magic Tees
- 17. Circulators, Isolator
- 18. Matched Loads
- 19. Fiber Optic Analog Trainer based LED
- 20. Fiber Optic Analog Trainer based laser
- 21. Fiber Optic Digital Trainer
- 22. Fiber cables (Plastic, Glass)

IV Year – II SEMESTER

т р с

3+1 0 3

CELLULAR AND MOBILE COMMUNICATIONS

UNIT I

CELLULAR MOBILE RADIO SYSTEMS: Introduction to Cellular Mobile System, Performance criteria, uniqueness of mobile radio environment, operation of cellular systems, Hexagonal shaped cells, Analog and Digital Cellular systems.

ELEMENTS OF CELLULAR RADIO SYSTEM DESIGN : General description of the problem, concept of frequency channels, Co-channel Interference Reduction Factor, desired C/I from a normal case in a Omni directional Antenna system, Cell splitting, consideration of the components of Cellular system.

UNIT II

INTERFERENCE : Introduction to Co-Channel Interference, real time Co-Channel interference, Co-Channel measurement, design of Antenna system, Antenna parameters and their effects, diversity receiver, non-cochannel interference-different types. **CELL COVERAGE FOR SIGNAL AND TRAFFIC:** Signal reflections in flat and hilly terrain, effect of human made structures, phase difference between direct and reflected paths, constant standard deviation, straight line path loss slope, general formula for mobile propagation over water and flat open area, near and long distance propagation antenna height gain, form of a point to point model.

UNIT III

CELL SITE AND MOBILE ANTENNAS : Sum and difference patterns and their synthesis, omni directional antennas, directional antennas for interference reduction, space diversity antennas, umbrella pattern antennas, minimum separation of cell site antennas, high gain antennas.

UNIT IV

FREQUENCY MANAGEMENT AND CHANNEL ASSIGNMENT: Numbering and grouping, setup access and paging channels channel assignments to cell sites and mobile units, channel sharing and borrowing, sectorization, overlaid cells, non fixed channel assignment.

UNIT V

Handoff, dropped calls and cell splitting, types of handoff, handoff invitation, delaying handoff, forced handoff, mobile assigned handoff. Intersystem handoff, cell splitting, micro cells, vehicle locating methods, dropped call rates and their evaluation.

UNIT VI

DIGITAL CELLULAR NETWORKS : GSM architecture, GSM channels, multiplex access scheme, TDMA, CDMA.

TEXTBOOKS :

- 1. Mobile Cellular Telecommunications W.C.Y. Lee, Tata McGraw Hill, 2rd Edn., 2006.
- 2. Principles of Mobile Communications Gordon L. Stuber, Springer International 2nd Edition, 2007.

REFERENCES :

- 1. Wireless Communications Theodore. S. Rapport, Pearson education, 2nd Edn., 2002.
- 2. Wireless and Mobile Communications Lee McGraw Hills, 3rd Edition, 2006.
- 3. Mobile Cellular Communication G Sasibhushana Rao Pearson
- **3.** Wireless Communication and Networking Jon W. Mark and Weihua Zhqung, PHI, 2005.
- **4.** Wireless Communication Technology R. Blake, Thompson Asia Pvt. Ltd., 2004.

IV Year – II SEMESTER

T P C 3+1 0 3

ELECTRONIC MEASUREMENTS AND INSTRUMENTATION

UNIT I

Performance characteristics of instruments, Static characteristics, Accuracy, Resolution, Precision, Expected value, Error, Sensitivity. Errors in Measurement, Dynamic Characteristics-speed of response, Fidelity, Lag and Dynamic error. DC Voltmeters- Multi-range, Range extension/Solid state and differential voltmeters, AC voltmeters- multi range, range extension, shunt. Thermocouple type RF ammeter, Ohmmeters series type, shunt type, Multi-meter for Voltage, Current and resistance measurements.

UNIT II

Signal Generator- fixed and variable, AF oscillators, Standard and AF sine and square wave signal generators, Function Generators, Square pulse, Random noise, sweep, Arbitrary waveform. Wave Analyzers, Harmonic Distortion Analyzers, Spectrum Analyzers, Digital Fourier Analyzers.

UNIT III

Oscilloscopes CRT features, vertical amplifiers, horizontal deflection system, sweep, trigger pulse, delay line, sync selector circuits, simple CRO, triggered sweep CRO, Dual beam CRO, . Dual trace oscilloscope, sampling oscilloscope, storage oscilloscope, digital readout oscilloscope, digital storage oscilloscope, Lissajous method of frequency measurement, standard specifications of CRO, probes for CRO- Active & Passive, attenuator type.

UNIT IV

AC Bridges Measurement of inductance- Maxwell's bridge, Anderson bridge. Measurement of capacitance -Schearing Bridge. Wheat stone bridge. Wien Bridge, Errors and precautions in using bridges. Q-meter.

UNIT V

Transducers- active & passive transducers : Resistance, Capacitance, inductance; Strain gauges, LVDT, Piezo Electric transducers, Resistance Thermometers, Thermocouples, Thermistors, Sensistors.

UNIT VI

Measurement of physical parameters force, pressure, velocity, humidity, moisture, speed, proximity and displacement. Data acquisition systems.

TEXTBOOKS :

- 1. Electronic instrumentation, second edition H.S.Kalsi, Tata McGraw Hill, 2004.
- 2. Modern Electronic Instrumentation and Measurement Techniques A.D. Helfrick and W.D. Cooper, PHI, 5th Edition, 2002.

REFERENCES :

- 1. Electronic Instrumentation & Measurements David A. Bell, PHI, 2nd Edition, 2003.
- 2. Electronic Test Instruments, Analog and Digital Measurements Robert A.Witte, Pearson Education, 2nd Ed., 2004.
- 3. Electronic Measurements & Instrumentations by K. Lal Kishore, Pearson Education 2005.

OUTCOMES

The student will be able to

- Select the instrument to be used based on the requirements.
- Understand and analyze different signal generators and analyzers.
- Understand the design of oscilloscopes for different applications.
- Design different transducers for measurement of different parameters.

IV Year – II SEMESTER

T P C 3+1 0 3

ELECTIVE – III

SATELLITE COMMUNICATIONS

UNIT I

INTRODUCTION : Origin of Satellite Communications, Historical Background, Basic Concepts of Satellite Communications, Frequency allocations for Satellite Services, Applications, Future Trends of Satellite Communications.

UNIT II

ORBITAL MECHANICS AND LAUNCHERS: Orbital Mechanics, Look Angle determination, Orbital perturbations, Orbit determination, launches and launch vehicles, Orbital effects in communication systems performance.

UNIT III

SATELLITE SUBSYSTEMS : Attitude and orbit control system, telemetry, tracking, Command and monitoring, power systems, communication subsystems, Satellite antenna Equipment reliability and Space qualification.

UNIT IV

SATELLITE LINK DESIGN : Basic transmission theory, system noise temperature and G/T ratio, Design of down links, up link design, Design of satellite links for specified C/N, System design example.

MULTIPLE ACCESS: Frequency division multiple access (FDMA) Intermodulation, Calculation of C/N. Time division Multiple Access (TDMA) Frame structure, Examples. Satellite Switched TDMA Onboard processing, DAMA, Code Division Multiple access (CDMA),Spread spectrum transmission and reception.

UNIT V

EARTH STATION TECHNOLOGY : Introduction, Transmitters, Receivers, Antennas, Tracking systems, Terrestrial interface, Primary power test methods.

LOW EARTH ORBIT AND GEO-STATIONARY SATELLITE SYSTEMS: Orbit consideration, coverage and frequency considerations,

174

Delay & Throughput considerations, System considerations, Operational NGSO constellation Designs

UNIT VI

SATELLITE NAVIGATION & THE GLOBAL POSITIONING SYSTEM [1] : Radio and Satellite Navigation, GPS Position Location principles, GPS Receivers and codes, Satellite signal acquisition, GPS Navigation Message, GPS signal levels, GPS receiver operation, GPS C/A code accuracy, Differential GPS.

TEXT BOOKS:

- 1. Satellite Communications Timothy Pratt, Charles Bostian and Jeremy Allnutt, WSE, Wiley Publications, 2nd Edition, 2003.
- Satellite Communications Engineering Wilbur L. Pritchard, Robert A Nelson and Henri G.Suyderhoud, 2nd Edition, Pearson Publications, 2003.

REFERENCES :

- 1. Satellite Communications : Design Principles M. Richharia, BS Publications, 2nd Edition, 2003.
- 2. Satellite Communication D.C Agarwal, Khanna Publications, 5th Ed.
- 3. Fundamentals of Satellite Communications K.N. Raja Rao, PHI, 2004
- 4. Satellite Communications Dennis Roddy, McGraw Hill, 2nd Edition, 1996.

MIXED SIGNAL DESIGN

(ELECTIVE – III)

OBJECTIVES

The student will be introduced to

- Understand the Switched capacitors Circuits and Operation and Analysis, PLLS.
- In this course, students can study Data Converter Fundamentals, Nyquist Rate A/D Converters.
- Another main object of this course is to motivate the graduate students to study and to analyze the Oversampling Converters and Continuous-Time Filters.
- The concepts of Continuous-Time Filters, CMOS Transconductors Using Triode and Active Transistors and MOSFET-C Filters.

UNIT-I:

Switched Capacitor Circuits: Introduction to Switched Capacitor circuitsbasic building blocks, Operation and Analysis, Non-ideal effects in switched capacitor circuits, Switched capacitor integrators first order filters, Switch sharing, biquad filters.

UNIT-II:

Phased Lock Loop (PLL): Basic PLL topology, Dynamics of simple PLL, Charge pump PLLs-Lock acquisition, Phase/Frequency detector and charge pump, Basic charge pump PLL, Non-ideal effects in PLLs-PFD/CP non-idealities, Jitter in PLLs, Delay locked loops, applications.

UNIT-III:

Data Converter Fundamentals: DC and dynamic specifications, Quantization noise, Nyquist rate D/A converters- Decoder based converters, Binary-Scaled converters, Thermometer-code converters, Hybrid converters **UNIT-IV:**

Nyquist Rate A/D Converters: Successive approximation converters, Flash converter, Two-step A/D converters, Interpolating A/D converters, Folding A/D converters, Pipelined A/D converters, Time-interleaved converters.

176

UNIT-V:

Oversampling Converters: Noise shaping modulators, Decimating filters and interpolating filters, Higher order modulators, Delta sigma modulators with multi-bit quantizers, Delta sigma D/A

UNIT-VI:

Continuous-Time Filters: Introduction to Gm-C Filters, Bipolar Transconductors, CMOS transconductors Using Triode and Active Transistors, BiCMOS Tran conductors, MOSFET-C Filters.

Text Books:

- 1. Design of Analog CMOS Integrated Circuits- Behzad Razavi, TMH Edition, 2002
- 2. Analog Integrated Circuit Design- David A. Johns, Ken Martin, Wiley Student Edition, 2013

Reference Books:

- 1. CMOS Mixed-Signal Circuit Design R. Jacob Baker, Wiley Interscience, 2009.
- CMOS Analog Circuit Design –Philip E. Allen and Douglas R. Holberg, Oxford University Press, International Second Edition/Indian Edition, 2010.

OUTCOMES

After going through this course the student will be able to

- Understand the concepts of Switched Capacitor circuits.
- Design and analysis of Nyquist Rate A/D Converters.
- Extend the Mixed Signal Design to Different Applications.
- Concepts of Oversampling Converters and Continuous-Time Filters.

EMBEDDED SYSTEMS (ELECTIVE – III)

OBJECTIVES

After going through this course the student will be able to

- Understand the building blocks of typical embedded system and different memory technology and memory types.
- Learn the characteristics of an embedded system, quality attributes of embedded systems, application specific and domain specific embedded system,
- Learn about communication devices and basics about VLSI and integrated circuit design and learn concept of firmware design approaches, ISR concept. Interrupt sources, interrupt servicing mechanism, multiple interrupts,
- Understand the concepts of c versus embedded c and compiler versus cross-compiler.
- Learn about the integrated development environment, software utility tool. Also learn about quality assurance and testing of the design, testing on host machine, simulators.

Unit-I:

Introduction: Embedded System-Definition, History, Classification, application areas and purpose of embedded systems, The typical embedded system-Core of the embedded system, Memory, Sensors and Actuators, Communication Interface, Embedded firmware, PCB and passive components. Characteristics, Quality attributes of an Embedded systems, Application-specific and Domain-Specific examples of an embedded system.

Unit-II:

Embedded Hardware Design: Analog and digital electronic components, I/O types and examples, Serial communication devices, Parallel device ports, Wireless devices, Timer and counting devices, Watchdog timer, Real time clock.

Unit-III:

Embedded Firmware Design: Embedded Firmware design approaches, Embedded Firmware development languages, ISR concept, Interrupt sources, Interrupt servicing mechanism, Multiple interrupts, DMA, Device driver programming, Concepts of C versus Embedded C and Compiler versus Cross-compiler.

Unit-IV:

Real Time Operating System: Operating system basics, Types of operating systems, Tasks, Process and Threads, Multiprocessing and Multitasking, Threads, Processes and Scheduling, Task Scheduling, Communication, Synchronization, Device Drivers, How to choose an RTOS.

Hardware Software Co-Design: Fundamental Issues in Hardware Software Co-Design, Computational models in embedded design, Hardware software Trade-offs, Integration of Hardware and Firmware, ICE.

Unit-V:

Embedded System Development: The integrated development environment, Types of files generated on cross-compilation, Deassembler/Decompiler, Simulators, Emulators and Debugging, Target hardware debugging, Boundary Scan, Embedded Software development process and tools.

Unit-VI:

Embedded System Implementation And Testing: The main software utility tool, CAD and the hardware, Translation tools-Pre-processors, Interpreters, Compilers and Linkers, Debugging tools, Quality assurance and testing of the design, Testing on host machine, Simulators, Laboratory Tools.

Text Books:

- 1. Embedded Systems Architecture By Tammy Noergaard, Elsevier Publications, 2005
- 2. Embedded System Design, Frank Vahid, Tony Givargis, John Wiley Publications.

References:

- 1. Embedded Systems, Raj Kamal-Tata McGraw Hill Education Private Limited, Second Edition, 2008
- 2. Embedding system building blocks By Labrosse, CMP publishers.

OUTCOMES

After going through this course the student will be able to

- Know basics of embedded system, classification, memories, different communication interface and what embedded firmware is and its role in embedded system, different system components.
- Distinguish all communication devices in embedded system, other peripheral device.
- Distinguish concepts of C versus embedded C and compiler versus cross-compiler.
- Choose an operating system, and learn how to choose an RTOS

RF CIRCUIT DESIGN (ELECTIVE – III)

UNIT -I:

Introduction to RF Electronics:

The Electromagnetic Spectrum, units and Physical Constants, Microwave bands – RF behavior of Passive components: Tuned resonant circuits, Vectors, Inductors and Capacitors - Voltage and Current in capacitor circuits – Tuned RF / IF Transformers.

UNIT -II:

Transmission Line Analysis: Examples of transmission lines- Transmission line equations and Biasing- Micro Strip Transmission Lines- Special Termination Conditions- sourced and Loaded Transmission Lines. **Single And Multiport Networks:** The Smith Chart, Interconnectivity networks, Network properties and Applications, Scattering Parameters.

UNIT -III:

Matching and Biasing Networks:

Impedance matching using discrete components – Micro strip line matching networks, Amplifier classes of Operation and Biasing networks.

UNIT-IV

RF Passive & Active Components: Filter Basics – Lumped filter design – Distributed Filter Design – Diplexer Filters- Crystal and Saw filters- Active Filters - Tunable filters – Power Combiners / Dividers – Directional Couplers – Hybrid Couplers – Isolators. RF Diodes – BJTs- FETs- HEMTs and Models.

UNIT -V:

RF Transistor Amplifier Design: Characteristics of Amplifiers - Amplifier Circuit Configurations, Amplifier Matching Basics, Distortion and noise products, Stability Considerations, Small Signal amplifier design, Power amplifier design, MMIC amplifiers, Broadband High Power multistage amplifiers, Low noise amplifiers, VGA Amplifiers.

UNIT -VI:

Oscillators: Oscillator basics, Low phase noise oscillator design, High frequency Oscillator configuration, LC Oscillators, VCOs, Crystal Oscillators, PLL Synthesizer, and Direct Digital Synthesizer. **RF Mixers:**

Basic characteristics of a mixer - Active mixers- Image Reject and Harmonic mixers, Frequency domain considerations.

TEXT BOOKS:

- 1. RF Circuit design: Theory and applications by Reinhold Ludwing, Pavel Bretchko. Pearson Education Asia Publication, New Delhi 2001.
- Radio Frequency and Microwave Communication Circuits Analysis and Design – Devendra K. Misra, Wiley Student Edition, John Wiley & Sons

REFERENCE BOOKS:

- 1. Radio frequency and Microwave Electronics Mathew M.Radmangh, 2001, PE Asia Publ.
- 2. RF Circuit Design Christopher Bowick, Cheryl Aljuni and John Biyler, Elsevier Science, 2008.
- 3. Secrets of RF Design Joseph Carr., 3rd Edition, Tab Electronics.
- 4. Complete Wireless Design Cotter W. Sawyer, 2nd Edition, Mc-Graw Hill.
- 5. Practical RF Circuit Design for Modem Wireless Systems Vol.2 -Less Besser and Rowan Gilmore.

Cloud Computing (ELECTIVE – III)

Course Objectives: The student will learn about the cloud environment, building software systems and components that scale to millions of users in modern internet, cloud concepts capabilities across the various cloud service models including Iaas, Paas, Saas, and developing cloud based software applications on top of cloud platforms.

Course Outcomes:

- 1. Understanding the key dimensions of the challenge of Cloud Computing.
- 2. Assessment of the economics , financial, and technological implications for selecting cloud computing for own organization.
- 3. Assessing the financial, technological, and organizational capacity of employer's for actively initiating and installing cloud-based applications.
- 4. Assessment of own organizations' needs for capacity building and training in cloud computing-related IT areas.

Syllabus:

UNIT I: Systems modeling, Clustering and virtualization:

Scalable Computing over the Internet, Technologies for Network based systems, System models for Distributed and Cloud Computing, Software environments for distributed systems and clouds, Performance, Security And Energy Efficiency.

UNIT II: Virtual Machines and Virtualization of Clusters and Data Centers:

Implementation Levels of Virtualization, Virtualization Structures/ Tools and mechanisms, Virtualization of CPU, Memory and I/O Devices, Virtual Clusters and Resource Management, Virtualization for Data Center Automation.

UNIT III: Cloud Platform Architecture:

Cloud Computing and service Models, Architectural Design of Compute and Storage Clouds, Public Cloud Platforms, Inter Cloud Resource Management, Cloud Security and Trust Management. Service Oriented Architecture, Message Oriented Middleware.

UNIT IV: Cloud Programming and Software Environments:

Features of Cloud and Grid Platforms, Parallel & Distributed Programming Paradigms, Programming Support of Google App Engine, Programming on Amazon AWS and Microsoft Azure, Emerging Cloud Software Environments.

UNIT V: Cloud Resource Management and Scheduling:

Policies and Mechanisms for Resource Management Applications of Control Theory to Task Scheduling on a Cloud, Stability of a Two Level Resource Allocation Architecture, Feedback Control Based on Dynamic Thresholds. Coordination of Specialized Autonomic Performance Managers, Resource Bundling, Scheduling Algorithms for Computing Clouds, Fair Queuing, Start Time Fair Queuing, Borrowed Virtual Time, Cloud Scheduling Subject to Deadlines, Scheduling Map Reduce Applications Subject to Deadlines.

UNIT VI:

Storage Systems: Evolution of storage technology, storage models, file systems and database, distributed file systems, general parallel file systems. Google file system., Apache Hadoop, Big Table, Megastore, Amazon Simple Storage Service (S3).

TEXT BOOKS:

- 1. Distributed and Cloud Computing, Kai Hwang, Geoffry C. Fox, Jack J. Dongarra MK Elsevier.
- 2. Cloud Computing, Theory and Practice, Dan C Marinescu, MK Elsevier.
- 3. Cloud Computing, A Hands on approach, Arshadeep Bahga, Vijay Madisetti, University Press.

REFERNCE BOOK:

- 1. Cloud Computing, A Practical Approach, Anthony T Velte, Toby J Velte, Robert Elsenpeter, TMH.
- 2. Mastering Cloud Computing, Foundations and Application Programming, Raj Kumar Buyya, Christen vecctiola, S Tammarai selvi, TMH.

IV Year – II SEMESTER

T P C 3+1 0 3

ELECTIVE - IV

WIRELESS SENSORS AND NETWORKS

UNIT I

OVERVIEW OF WIRELESS SENSOR NETWORKS:

Key definitions of sensor networks, Advantages of sensor Networks, Unique constraints an challenges, Driving Applications, Enabling Technologies for Wireless Sensor Networks.

ARCHITECTURES:

Single-Node Architecture - Hardware Components, Energy Consumption of Sensor Nodes, Operating Systems and Execution Environments, Network Architecture -Sensor Network Scenarios, Optimization Goals and Figures of Merit, Gateway Concepts.

UNIT II

NETWORKING Technologies:

Physical Layer and Transceiver Design Considerations, Personal area networks (PANs), hidden node and exposed node problem, Topologies of PANs, MANETs, WANETs.

UNIT-III

MAC Protocols for Wireless Sensor Networks:

Issues in Designing a MAC protocol for Ad Hoc Wireless Networks, Design goals of a MAC Protocol for Ad Hoc Wireless Networks, Classifications of MAC Protocols, Contention - Based Protocols, Contention - Based Protocols with reservation Mechanisms, Contention – Based MAC Protocols with Scheduling Mechanisms, MAC Protocols that use Directional Antennas, Other MAC Protocols.

UNIT-IV

ROUTING PROTOCOLS:

Introduction, Issues in Designing a Routing Protocol for Ad Hoc Wireless Networks, Classification of Routing Protocols, Table –Driven Routing Protocols, On – Demand Routing Protocols, Hybrid Routing Protocols, Routing Protocols with Efficient Flooding Mechanisms, Hierarchical Routing Protocols, Power – Aware Routing Protocols, Proactive Routing.

184

UNIT-V

TRANSPORT LAYER AND SECURITY PROTOCOLS:

Introduction, Issues in Designing a Transport Layer Protocol for Ad Hoc Wireless Networks, Design Goals of a Transport Layer Protocol for Ad Hoc Wireless Networks, Classification of Transport Layer Solutions, TCP Over Ad Hoc Wireless Networks, Other Transport Layer Protocol for Ad Hoc Wireless Networks.

UNIT- VI

SECURITY IN WSNs:

Security in Ad Hoc Wireless Networks, Network Security Requirements, Issues and Challenges in Security Provisioning, Network Security Attacks, Key Management, Secure Routing in Ad Hoc Wireless Networks.

SENSOR NETWORK PLATFORMS AND TOOLS:

Sensor Node Hardware – Berkeley Motes, Programming Challenges, Nodelevel software platforms, Node-level Simulators, State-centric programming.

APPLICATIONS of WSN:

S Ultra wide band radio communication, Wireless fidelity systems. Future directions, Home automation, smart metering Applications.

TEXT BOOKS:

- 1. Ad Hoc Wireless Networks: Architectures and Protocols C. Siva Ram Murthy and B.S.Manoj, 2004, PHI
- 2. Wireless Ad- hoc and Sensor Networks: Protocols, Performance and Control Jagannathan Sarangapani, CRC Press
- 3. Holger Karl & Andreas Willig, "Protocols And Architectures for Wireless Sensor Networks", John Wiley, 2005.

REFERENCES:

- Kazem Sohraby, Daniel Minoli, & Taieb Znati, "Wireless Sensor Networks- Technology, Protocols, and Applications", John Wiley, 2007.
- 2. Feng Zhao & Leonidas J. Guibas, "Wireless Sensor Networks- An Information Processing Approach", Elsevier, 2007.
- 3. Ad- Hoc Mobile Wireless Networks: Protocols & Systems, C.K. Toh ,1 ed. Pearson Education.
- 4. Wireless Sensor Networks C. S. Raghavendra, Krishna M. Sivalingam, 2004, Springer.
- 5. Wireless Sensor Networks S Anandamurugan, Lakshmi Publications

SYSTEM ON CHIP (ELECTIVE - IV)

OBJECTIVES

After going through this course the student will be able to

- Understand the System Architecture and Processor Architecture, approach for a SOC Design.
- Learn the, Basic concepts in Processor Micro Architecture, and Learn Different Types of Processors like VLIW Processors, Superscalar Processors etc.
- Learn about SOC external memory, Scratchpads and Cache memory and Multilevel Caches.
- Learn the SOC Design approach, Design and evaluation, Applications Like Image compression etc...

UNIT-I:

Introduction to the System Approach: System Architecture, Components of the system, Hardware & Software, Processor Architectures, Memory and Addressing. System level interconnection, an approach for SOC Design, System Architecture and Complexity.

UNIT-II:

Processors : Introduction, Processor Selection for SOC, Basic concepts in Processor Architecture, Micro Architecture, Basic elements in Instruction handling. Buffers: minimizing Pipeline Delays, Branches, More Robust Processors, Vector Processors and Vector Instructions extensions, VLIW Processors, Superscalar Processors.

UNIT-III:

Memory Design for SOC: Overview of SOC external memory, Internal Memory, Size, Scratchpads and Cache memory, Cache Organization, Cache data, Write Policies, Strategies for line replacement at miss time, Types of Cache, Split – I, and D – Caches, Multilevel Caches, Virtual to real translation, SOC Memory System, Models of Simple Processor – memory interaction.

UNIT-IV:

Interconnect Customization and Configuration: Inter Connect Architectures, Bus: Basic Architectures, SOC Standard Buses, Analytic Bus Models, Using the Bus model, Effects of Bus transactions and contention time. SOC Customization: An overview, Customizing Instruction Processor

UNIT-V:

Interconnect Configuration: Reconfiguration Technologies, Mapping design onto Reconfigurable devices, Instance- Specific design, Customizable Soft Processor, Reconfiguration - overhead analysis and trade-off analysis on reconfigurable Parallelism.

UNIT-VI:

Application Studies / Case Studies: SOC Design approach, AES algorithms, Design and evaluation, Image compression – JPEG compression.

Text Books:

- 1. Computer System Design System-on-Chip Michael J. Flynn and Wayne Luk, Wiely India Pvt. Ltd.
- Design of System on a Chip: Devices and Components Ricardo Reis, 1st Ed., 2004, Springer

Reference Books:

- ARM System on Chip Architecture Steve Furber –2nd Ed., 2000, Addison Wesley Professional.
- 2. System on Chip Verification Methodologies and Techniques Prakash Rashinkar, Peter Paterson and Leena Singh L, 2001, Kluwer Academic Publishers.

OUTCOMES

After going through this course the student will be able to

- Know basics of System Architecture and Processor Architecture.
- Know different Types of Processors Like VLIW Processors, Superscalar Processors etc. and Basic concepts in Processor Micro Architecture.
- Distinguish Cache memory and Multilevel Caches, SOC external memory.
- Know the Concept of Inter Connect Architectures, SOC Standard Buses and Reconfiguration Technologies.

LOW POWER VLSI DESIGN (ELECTIVE - IV)

OBJECTIVES

- The student will be able to understand the Fundamentals of Low Power VLSI Design.
- In this course, students can study low-Power Design Approaches, Power estimation and analysis.
- Another main object of this course is to motivate the graduate students to study and to analyze the Low-Voltage Low-Power Adders, Multipliers.
- The concepts of Low-Voltage Low-Power Memories and Future Trend and Development of DRAM.

UNIT-I:

Fundamentals of Low Power VLSI Design: Need for Low Power Circuit Design, Sources of Power Dissipation – Switching Power Dissipation, Short Circuit Power Dissipation, Leakage Power Dissipation, Glitching Power Dissipation, Short Channel Effects –Drain Induced Barrier Lowering and Punch Through, Surface Scattering, Velocity Saturation, Impact Ionization, Hot Electron Effect.

UNIT-II:

Low-Power Design Approaches:

Low-Power Design through Voltage Scaling: VTCMOS circuits, MTCMOS circuits, Architectural Level Approach –Pipelining and Parallel Processing Approaches.

Switched Capacitance Minimization Approaches: System Level Measures, Circuit Level Measures, Mask level Measures.

UNIT-III:

Power estimation and analysis: SPICE circuit simulators, gate level logic simulation, capacitive power estimation, static state power and gate level capacitance estimation.

UNIT-IV:

Low-Voltage Low-Power Adders: Introduction, Standard Adder Cells, CMOS Adder's Architectures – Ripple Carry Adders, Carry Look-Ahead Adders, Carry Select Adders, Carry Save Adders, Low-Voltage Low-Power

Design Techniques – Trends of Technology and Power Supply Voltage, Low-Voltage Low-Power Logic Styles.

UNIT-V:

Low-Voltage Low-Power Multipliers Introduction, Overview of Multiplication, Types of Multiplier Architectures, Braun Multiplier, Baugh-Wooley Multiplier, Booth Multiplier, Introduction to Wallace Tree Multiplier.

UNIT-VI:

Low-Voltage Low-Power Memories: Basics of ROM, Low-Power ROM Technology, Future Trend and Development of ROMs, Basics of SRAM, Memory Cell, Precharge and Equalization Circuit, Low-Power SRAM Technologies, Basics of DRAM, Self-Refresh Circuit, Future Trend and Development of DRAM.

Text Books:

1. Low-Voltage, Low-Power VLSI Subsystems – Kiat-Seng Yeo, Kaushik Roy, TMH Professional Engineering.

Reference Books:

- 1. Low Power CMOS VLSI Circuit Design Kaushik Roy, Sharat C. Prasad, John Wiley & Sons, 2000.
- 2. Practical Low Power Digital VLSI Design Gary K. Yeap, Kluwer Academic Press, 2002.

OUTCOMES

After going through this course the student will be able to

- Understand the concepts of Low-Power Design Approaches.
- Design and analysis of Low-Voltage Low-Power Circuits.
- Extend the Low Power Design to Different Applications.
- Understand of Low-Voltage Low-Power Memories and Basics of DRAM.

BIO-MEDICAL INSTRUMENTATION

(ELECTIVE - IV)

UNIT-I

Sources of Bioelectric potentials and Electrodes: Resisting and Action Potentials, Propagation of Action Potentials, The Bioelectric Potentials. Electrodes: Electrode theory, Bio Potential Electrodes, Biochemical Transducers, introduction to bio-medical signals.

UNIT-II

The Cardiovascular System: The Heart and Cardiovascular System, The Heart, Blood Pressure, Characteristics of Blood Flow, Heart Sounds, Cardio Vascular Measurements, Electrocardiography, Measurement of Blood Pressure, Measurement of Blood Flow and Cardiac output, Plethysmography, Measurement of Heart Sounds, Event detection, PQRS & T-Waves in ECG, the first & second Heart beats, ECG rhythm analysis, the di-crotic notch in the carotid pulse detection of events and waves, analysis of exercise ECG, analysis of event related potentials, correlation analysis of EEG channels, correlation of muscular contraction.

UNIT- III

Patient Care & Monitory and Measurements in Respiratory System: The elements of Intensive Care Monitory, Diagnosis, Calibration and reparability of Patient Monitoring equipment, other instrumentation for monitoring patients, pace makers, defibrillators, the physiology of respiratory system, tests and instrumentation for mechanics of breathing, respiratory theory equipment, analysis of respiration.

UNIT-IV

Bio telemetry and Instrumentation for the clinical laboratory Introduction to bio telemetry, Physiological parameters adaptable to bio telemetry, the components of bio telemetry system, implantable units, applications of telemetry in patient care – The blood, tests on blood cells, chemical test, automation of chemical tests.

UNIT-V

X-ray and radioisotope instrumentation and electrical safety of medical equipment: Generation of Ionizing radiation, instrumentation for diagnostic X-rays, special techniques, instrumentation for the medical use of

radioisotopes, radiation therapy - Physiological effects of electrical current, shock Hazards from electrical equipment, Methods of accident prevention.

UNIT-VI

Modern Imaging Systems: Tomography, Magnetic resonance Imaging System, Ultrasonic Imaging System, Medical Thermography.

TEXT BOOK:

- 1. Biomedical Instrumentation and Measurements C. Cromwell, F.J. Weibell, E.A.Pfeiffer Pearson education.
- 2. Biomedical signal analysis Rangaraj, M. Rangayya Wiley Inter science John willey & Sons Inc.

Reference:

- 1. Hand Book of Bio-Medical Instrumentation R.S. Khandpur, (TMH)
- 2. Introduction to Bio-Medical Engineering Domach, (Pearson)
- 3. Introduction to Bio-Medical Equipment Technology Cart, (Pearson)

EMI / EMC

Pre requisites: EMTL and AWP Courses.

Objectives:

- Student shall be able to understand the root causes for Electromagnetic Noise (EMI), its sources.
- Shall be able to understand the effects of EMI and the required precautions to be taken/to be discussed with his peer group.
- Shall be able to understand the different measurement techniques of EMI (for conducted and normal) and their influences in detail.
- Shall be able to understand different compatibility techniques (EMC) to reduce/suppress EMI.
- Shall be able to understand different standards being followed across the world in the fields of EMI/EMC.

UNIT-I: Natural and Nuclear sources of EMI / EMC : Introduction, Electromagnetic environment, History, Concepts, Practical experiences and concerns, frequency spectrum conservations. An overview of EMI / EMC, Natural and Nuclear sources of EMI.

UNIT-II: EMI from apparatus, circuits and open area test sites : Electromagnetic emissions, noise from relays and switches, non-linearities in circuits, passive inter modulation, cross talk in transmission lines, transients in power supply lines, electromagnetic interference (EMI). Open area test sites and measurements.

UNIT-III: Radiated and conducted interference measurements: Anechoic chamber, TEM cell, GH TEM Cell, characterization of conduction currents / voltages, conducted EM noise on power lines, conducted EMI from equipment, Immunity to conducted EMI detectors and measurements.

UNIT-IV:ESD, Grounding, shielding, bonding and EMI filters : Principles and types of grounding, shielding and bonding, characterization of filters, power lines filter design. ESD, Electrical fast transients / bursts, electrical surges.

UNIT-V: Cables, connectors, components: Introduction, EMI suppression cables, EMC connectors, EMC gaskets, Isolation transformers, opto-isolators, Transient and Surge Suppression Devices.

UNIT-VI: EMC standards- National / International .: Introduction, Standards for EMI and EMC, MIL-Standards, IEEE/ANSI standards, CISPR/IEC standards, FCC regulations, Euro norms, British Standards, EMI/EMC standards in JAPAN, Conclusions.

Text Books :

- 1. Engineering Electromagnetic Compatibility by Dr. V.P. Kodali, IEEE Publication, Printed in India by S. Chand & Co. Ltd., New Delhi, 2000.
- Electromagnetic Interference and Compatibility IMPACT series, IIT Delhi, Modules 1 – 9.

References :

1. Introduction to Electromagnetic Compatibility, NY, John Wiley, 1992, by C.R. Pal.

Outcomes-

At the end of this Course

- Students shall be able to distinguish effects of EMI and counter measures by EMC-techniques.
- Students shall apply the knowledge gained in selecting proper gadget/device/appliance/system, as per EMC- norms specified by regulating authorities.
- Students shall choose career in the fields of EMI/EMC as an Engineer/Researcher/Entrepreneur in India/abroad.

IV Year – II SEMESTER

T P C 0 0 9

Project & Seminar